Chaos on Fuzzy Dynamical Systems

被引:5
|
作者
Martinez-Gimenez, Felix [1 ]
Peris, Alfred [1 ]
Rodenas, Francisco [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
chaotic operators; hypercyclic operators; hyperspaces of compact sets; spaces of fuzzy sets; A-transitivity; DISTRIBUTIONAL CHAOS; TRANSITIVITY; OPERATORS;
D O I
10.3390/math9202629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a continuous map f : X -> X on a metric space, it induces the maps f over bar :K(X) -> K(X), on the hyperspace of nonempty compact subspaces of X, and (f) over cap :F(X) -> F(X), on the space of normal fuzzy sets, consisting of the upper semicontinuous functions u:X -> [0,1] with compact support. Each of these spaces can be endowed with a respective metric. In this work, we studied the relationships among the dynamical systems (X,f), (K(X),f over bar ), and (F(X),(f) over cap). In particular, we considered several dynamical properties related to chaos: Devaney chaos, A-transitivity, Li-Yorke chaos, and distributional chaos, extending some results in work by Jardon, Sanchez and Sanchis (Mathematics 2020, 8, 1862) and work by Bernardes, Peris and Rodenas (Integr. Equ. Oper. Theory 2017, 88, 451-463). Especial attention is given to the dynamics of (continuous and linear) operators on metrizable topological vector spaces (linear dynamics).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Distal Fuzzy Dynamical Systems
    Sayyari, Y.
    Molaei, M. R.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2012, 7 (01): : 398 - 405
  • [42] Discrete fuzzy dynamical systems
    Román-Flores, H
    Flores-Franulic, A
    18TH INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1999, : 75 - 76
  • [43] Conditional fuzzy entropy of fuzzy dynamical systems
    Yan, Kesong
    Zeng, Fanping
    FUZZY SETS AND SYSTEMS, 2018, 342 : 138 - 152
  • [44] Introduction to applied nonlinear dynamical systems and chaos
    Krisztin, Tibor
    ACTA SCIENTIARUM MATHEMATICARUM, 2009, 75 (1-2): : 366 - 367
  • [45] Controlling fast chaos in delay dynamical systems
    Blakely, JN
    Illing, L
    Gauthier, DJ
    PHYSICAL REVIEW LETTERS, 2004, 92 (19) : 193901 - 1
  • [46] On the robustness of chaos in dynamical systems: Theories and applications
    Elhadj, Zeraoulia
    Sprott, J. C.
    FRONTIERS OF PHYSICS IN CHINA, 2008, 3 (02): : 195 - 204
  • [47] DYNAMICAL-SYSTEMS AND CHAOS - GARRIDO,L
    KILMISTER, CW
    CONTEMPORARY PHYSICS, 1984, 25 (03) : 304 - 304
  • [48] CHAOS OF DYNAMICAL SYSTEMS ON GENERAL TIME DOMAINS
    Boyarsky, Abraham
    Gora, Pawel
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (11): : 3829 - 3832
  • [49] Periodic motions and chaos in nonlinear dynamical systems
    Albert C. J. Luo
    The European Physical Journal Special Topics, 2019, 228 : 1745 - 1746
  • [50] Decidability of Chaos for Some Families of Dynamical Systems
    Alexander Arbieto
    Carlos Matheus
    Foundations of Computational Mathematics, 2004, 4 : 269 - 275