Chaos on Fuzzy Dynamical Systems

被引:5
|
作者
Martinez-Gimenez, Felix [1 ]
Peris, Alfred [1 ]
Rodenas, Francisco [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
chaotic operators; hypercyclic operators; hyperspaces of compact sets; spaces of fuzzy sets; A-transitivity; DISTRIBUTIONAL CHAOS; TRANSITIVITY; OPERATORS;
D O I
10.3390/math9202629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a continuous map f : X -> X on a metric space, it induces the maps f over bar :K(X) -> K(X), on the hyperspace of nonempty compact subspaces of X, and (f) over cap :F(X) -> F(X), on the space of normal fuzzy sets, consisting of the upper semicontinuous functions u:X -> [0,1] with compact support. Each of these spaces can be endowed with a respective metric. In this work, we studied the relationships among the dynamical systems (X,f), (K(X),f over bar ), and (F(X),(f) over cap). In particular, we considered several dynamical properties related to chaos: Devaney chaos, A-transitivity, Li-Yorke chaos, and distributional chaos, extending some results in work by Jardon, Sanchez and Sanchis (Mathematics 2020, 8, 1862) and work by Bernardes, Peris and Rodenas (Integr. Equ. Oper. Theory 2017, 88, 451-463). Especial attention is given to the dynamics of (continuous and linear) operators on metrizable topological vector spaces (linear dynamics).
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Fuzzifying Chaos in Dynamical Systems
    Ferreira, Marcos, V
    Rios, Tatiane N.
    Rios, Ricardo A.
    2024 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ-IEEE 2024, 2024,
  • [12] A Study of Chaos in Dynamical Systems
    Effah-Poku, S.
    Obeng-Denteh, W.
    Dontwi, I. K.
    JOURNAL OF MATHEMATICS, 2018, 2018
  • [13] Dynamical Chaos in Planetary Systems
    Murray, Carl
    OBSERVATORY, 2021, 141 (1282): : 144 - 145
  • [14] Order and Chaos in Dynamical Systems
    Contopoulos, George
    MILAN JOURNAL OF MATHEMATICS, 2009, 77 (01) : 101 - 126
  • [15] Anticontrol of chaos for discrete-time dynamical systems via fuzzy hyperbolic models
    Zhao, Yan
    Zhang, Huaguang
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 96 - +
  • [16] Hybrid dynamical systems: Stability and chaos
    Savkin, AV
    Matveev, AS
    PERSPECTIVES IN ROBUST CONTROL, 2001, 268 : 297 - 309
  • [17] Nonlinear dynamical systems, their stability, and chaos
    1600, American Society of Mechanical Engineers (ASME), United States (66):
  • [18] Identification of Deterministic Chaos in Dynamical Systems
    Houfek, M.
    Sveda, P.
    Kratochvil, C.
    MECHATRONICS: RECENT TECHNOLOGICAL AND SCIENTIFIC ADVANCES, 2011, : 293 - 296
  • [19] Dynamical chaos: systems of classical mechanics
    Loskutov, A.
    PHYSICS-USPEKHI, 2007, 50 (09) : 939 - 964
  • [20] Boundedness of dynamical systems and chaos synchronization
    Shahverdiev, EMO
    PHYSICAL REVIEW E, 1999, 60 (04) : 3905 - 3909