Chaos on Fuzzy Dynamical Systems

被引:5
|
作者
Martinez-Gimenez, Felix [1 ]
Peris, Alfred [1 ]
Rodenas, Francisco [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
chaotic operators; hypercyclic operators; hyperspaces of compact sets; spaces of fuzzy sets; A-transitivity; DISTRIBUTIONAL CHAOS; TRANSITIVITY; OPERATORS;
D O I
10.3390/math9202629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a continuous map f : X -> X on a metric space, it induces the maps f over bar :K(X) -> K(X), on the hyperspace of nonempty compact subspaces of X, and (f) over cap :F(X) -> F(X), on the space of normal fuzzy sets, consisting of the upper semicontinuous functions u:X -> [0,1] with compact support. Each of these spaces can be endowed with a respective metric. In this work, we studied the relationships among the dynamical systems (X,f), (K(X),f over bar ), and (F(X),(f) over cap). In particular, we considered several dynamical properties related to chaos: Devaney chaos, A-transitivity, Li-Yorke chaos, and distributional chaos, extending some results in work by Jardon, Sanchez and Sanchis (Mathematics 2020, 8, 1862) and work by Bernardes, Peris and Rodenas (Integr. Equ. Oper. Theory 2017, 88, 451-463). Especial attention is given to the dynamics of (continuous and linear) operators on metrizable topological vector spaces (linear dynamics).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Control of chaos in nonlinear dynamical systems
    Magnitskii, NA
    Sidorov, SV
    DIFFERENTIAL EQUATIONS, 1998, 34 (11) : 1501 - 1509
  • [32] Chaos, periodicity and complexity on dynamical systems
    Balibrea, Francisco
    CHAOS, NONLINEARITY, COMPLEXITY: THE DYNAMICAL PARADIGM OF NATURE, 2006, 206 : 1 - 52
  • [33] A note on chaos in fuzzy systems
    Román-Flores, H
    Chalco-Cano, Y
    SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 669 - 674
  • [34] Martelli’s Chaos in Inverse Limit Dynamical Systems and Hyperspace Dynamical Systems
    Lei Liu
    Shuli Zhao
    Results in Mathematics, 2013, 63 : 195 - 207
  • [35] Martelli's Chaos in Inverse Limit Dynamical Systems and Hyperspace Dynamical Systems
    Liu, Lei
    Zhao, Shuli
    RESULTS IN MATHEMATICS, 2013, 63 (1-2) : 195 - 207
  • [36] A chaos to chaos control approach for controlling the chaotic dynamical systems using Hamilton energy feedback and fuzzy-logic system
    Ahrabi, Atike Reza
    Kobravi, Hamid Reza
    CHAOS, 2019, 29 (07)
  • [37] FUZZY DYNAMICAL-SYSTEMS
    KLOEDEN, PE
    FUZZY SETS AND SYSTEMS, 1982, 7 (03) : 275 - 296
  • [38] Generators of fuzzy dynamical systems
    Dumitrescu, D
    Haloiu, C
    Dumitrescu, A
    FUZZY SETS AND SYSTEMS, 2000, 113 (03) : 447 - 452
  • [39] On the stability of fuzzy dynamical systems
    Cecconello, M. S.
    Bassanezi, R. C.
    Brandao, A. J. V.
    Leite, J.
    FUZZY SETS AND SYSTEMS, 2014, 248 : 106 - 121
  • [40] Entropy of fuzzy dynamical systems
    Riecan, B
    STATE OF THE ART IN COMPUTATIONAL INTELLIGENCE, 2000, : 394 - 396