Chaos on Fuzzy Dynamical Systems

被引:4
|
作者
Martinez-Gimenez, Felix [1 ]
Peris, Alfred [1 ]
Rodenas, Francisco [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
chaotic operators; hypercyclic operators; hyperspaces of compact sets; spaces of fuzzy sets; A-transitivity; DISTRIBUTIONAL CHAOS; TRANSITIVITY; OPERATORS;
D O I
10.3390/math9202629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a continuous map f : X -> X on a metric space, it induces the maps f over bar :K(X) -> K(X), on the hyperspace of nonempty compact subspaces of X, and (f) over cap :F(X) -> F(X), on the space of normal fuzzy sets, consisting of the upper semicontinuous functions u:X -> [0,1] with compact support. Each of these spaces can be endowed with a respective metric. In this work, we studied the relationships among the dynamical systems (X,f), (K(X),f over bar ), and (F(X),(f) over cap). In particular, we considered several dynamical properties related to chaos: Devaney chaos, A-transitivity, Li-Yorke chaos, and distributional chaos, extending some results in work by Jardon, Sanchez and Sanchis (Mathematics 2020, 8, 1862) and work by Bernardes, Peris and Rodenas (Integr. Equ. Oper. Theory 2017, 88, 451-463). Especial attention is given to the dynamics of (continuous and linear) operators on metrizable topological vector spaces (linear dynamics).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fuzzy chaos generators for nonlinear dynamical systems
    Zhong, L
    [J]. 2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 429 - 433
  • [2] Chaos in nonautonomous discrete fuzzy dynamical systems
    Lan, Yaoyao
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (02): : 404 - 412
  • [3] Polynomial chaos expansion with fuzzy and random uncertainties in dynamical systems
    Jacquelin, E.
    Friswell, M. I.
    Adhikari, S.
    Dessombz, O.
    Sinou, J. -J.
    [J]. PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 4295 - 4306
  • [4] Chaos and Dynamical Systems
    Bohn, John L.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2020, 88 (04) : 335 - 336
  • [5] A theory of fuzzy chaos for the simulation and control of non-linear dynamical systems
    Castillo, O
    Melin, P
    [J]. APPLIED COMPUTATIONAL INTELLIGENCE, 2004, : 649 - 654
  • [6] Application of a new theory of fuzzy chaos for the simulation and control of nonlinear dynamical systems
    Castillo, Oscar
    Melin, Patricia
    [J]. Systems Analysis Modelling Simulation, 2003, 43 (07): : 847 - 865
  • [7] Chaos and control in dynamical systems
    Loskutov A.Y.
    [J]. Computational Mathematics and Modeling, 2001, 12 (4) : 314 - 352
  • [8] DYNAMICAL SYSTEMS, STABILITY, AND CHAOS
    Ball, Rowena
    Holmes, Philip
    [J]. FRONTIERS IN TURBULENCE AND COHERENT STRUCTURES, 2007, 6 : 1 - +
  • [9] Order and Chaos in Dynamical Systems
    George Contopoulos
    [J]. Milan Journal of Mathematics, 2009, 77 : 101 - 126
  • [10] CHAOS IN NONAUTONOMOUS DYNAMICAL SYSTEMS
    Oprocha, Piotr
    Wilczynski, Pawel
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (03): : 209 - 221