Cone-beam tomography with a digital camera

被引:11
|
作者
Marks, DL [1 ]
Stack, R [1 ]
Johnson, AJ [1 ]
Brady, DJ [1 ]
Munson, DC [1 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Elect & Comp Engn, Urbana, IL 61801 USA
关键词
D O I
10.1364/AO.40.001795
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that x-ray computer tomography algorithms can be applied with minimal alteration to the three-dimensional reconstruction of visible sources. Diffraction and opacity affect visible systems more severely than x-ray systems. For camera-based tomography, diffraction can be neglected for objects within the depth of field. We show that, for convex objects, opacity has the effect of windowing the angular observation range and thus blurring the reconstruction. For concave objects, opacity leads to nonlinearity in the transformation from object to reconstruction and may cause multiple objects to map to the same reconstruction. In x-ray tomography, the contribution of an object point to a line integral is independent of the orientation of the Line. In optical tomography, however, a Lambertian assumption may be more realistic. We derive an expression for the blur function (the patch response) for a Lambertian source. We present experimental results showing cone-beam reconstruction of an incoherently illuminated opaque object. (C) 2001 Optical Society of America.
引用
收藏
页码:1795 / 1805
页数:11
相关论文
共 50 条
  • [41] Cone-beam computed tomography of the head in standing equids
    Bregger, M. D. Klopfenstein
    Koch, C.
    Zimmermann, R.
    Sangiorgio, D.
    Schweizer-Gorgas, D.
    BMC VETERINARY RESEARCH, 2019, 15 (01)
  • [42] Cone-beam Computed Tomography Image Pretreatment and Segmentation
    Zheng, Jia
    Zhang, Dinghua
    Huang, Kuidong
    Sun, Yuanxi
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2018, : 25 - 28
  • [43] The use of cone-beam computed tomography for orthodontic purposes
    Kuijpers-Jagtman, Anne Marie
    Kuijpers, Mette A. R.
    Schols, Jan G. J. H.
    Maal, Thomas J. J.
    Breuning, Karel H.
    van Vlijmen, Olivier J. C.
    SEMINARS IN ORTHODONTICS, 2013, 19 (03) : 196 - 203
  • [44] Local cone-beam tomography image reconstruction on chords
    Anastasio, Mark A.
    Zou, Yu
    Sidky, Emil Y.
    Pan, Xiaochuan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (06) : 1569 - 1579
  • [45] Cone-beam tomography from 12 pinhole vertices
    Clackdoyle, R
    Noo, F
    2001 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORDS, VOLS 1-4, 2002, : 1874 - 1876
  • [46] A fast and efficient method for sequential cone-beam tomography
    Köhler, T
    Proksa, R
    Grass, M
    MEDICAL PHYSICS, 2001, 28 (11) : 2318 - 2327
  • [47] Mart Algorithms for Circular and Helical Cone-Beam Tomography
    Jain, Nitin
    Raj, Anant
    Kalra, M. S.
    Munshi, Prabhat
    Ravindran, V. R.
    RESEARCH IN NONDESTRUCTIVE EVALUATION, 2011, 22 (03) : 147 - 168
  • [48] Polychromatic cone-beam phase-contrast tomography
    Myers, G. R.
    Mayo, S. C.
    Gureyev, T. E.
    Paganin, D. M.
    Wilkins, S. W.
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [49] Third molar evaluation with cone-beam computerized tomography
    Reyes Enciso
    Robert A. Danforth
    Emanuel S. Alexandroni
    Ahmed Memon
    James Mah
    International Journal of Computer Assisted Radiology and Surgery, 2006, 1 : 113 - 116
  • [50] Motion compensation in extremity cone-beam computed tomography
    Sisniega, Alejandro
    Thawait, Gaurav K.
    Shakoor, Delaram
    Siewerdsen, Jeffrey H.
    Demehri, Shadpour
    Zbijewski, Wojciech
    SKELETAL RADIOLOGY, 2019, 48 (12) : 1999 - 2007