Mechanism, time-reversal symmetry, and topology of superconductivity in noncentrosymmetric systems

被引:26
|
作者
Scheurer, M. S. [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76131 Karlsruhe, Germany
关键词
2-DIMENSIONAL ELECTRON-GAS; SPIN; STATE; INSULATOR; ALLOYS;
D O I
10.1103/PhysRevB.93.174509
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the possible interaction-induced superconducting instabilities in noncentrosymmetric systems based on symmetries of the normal state. It is proven that pure electron-phonon coupling will always lead to a fully gapped superconductor that does not break time-reversal symmetry and is topologically trivial. We show that topologically nontrivial behavior can be induced by magnetic doping without gapping out the resulting Kramers pair of Majorana edge modes. In the case of superconductivity arising from the particle-hole fluctuations associated with a competing instability, the properties of the condensate crucially depend on the time-reversal behavior of the order parameter of the competing instability. When the order parameter preserves time-reversal symmetry, we obtain exactly the same properties as in the case of phonons. If it is odd under time reversal, the Cooper channel of the interaction will be fully repulsive leading to sign changes of the gap and making spontaneous time-reversal-symmetry breaking possible. To discuss topological properties, we focus on fully gapped time-reversal-symmetric superconductors and derive constraints on possible pairing states that yield necessary conditions for the emergence of topologically nontrivial superconductivity. These conditions might serve as a tool in the search for topological superconductors. We also discuss implications for oxide heterostructures and single-layer FeSe.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] A NOTE ON TIME-REVERSAL SYMMETRY
    GIRARD, R
    KROGER, H
    CANADIAN JOURNAL OF PHYSICS, 1985, 63 (08) : 1128 - 1131
  • [42] Noninvertible Time-Reversal Symmetry
    Choi, Yichul
    Lam, Ho Tat
    Shao, Shu-Heng
    PHYSICAL REVIEW LETTERS, 2023, 130 (13)
  • [43] Time-reversal symmetry in optics
    Leuchs, G.
    Sondermann, M.
    PHYSICA SCRIPTA, 2012, 85 (05)
  • [44] TIME-REVERSAL SYMMETRY OF FLUCTUATIONS
    POMEAU, Y
    JOURNAL DE PHYSIQUE, 1982, 43 (06): : 859 - 867
  • [45] Time-reversal symmetry breaking?
    Borisenko, SV
    Kordyuk, AA
    Koitzsch, A
    Knupfer, M
    Fink, J
    Berger, H
    Lin, CT
    NATURE, 2004, 431 (7004) : 1 - 2
  • [46] Time-reversal symmetry breaking?
    Sergey V. Borisenko
    Alexander A. Kordyuk
    Andreas Koitzsch
    Martin Knupfer
    Jörg Fink
    Helmuth Berger
    Chengtian T. Lin
    Nature, 2004, 431 : 1 - 2
  • [47] Humean time-reversal symmetry
    Cristian López
    Michael Esfeld
    Synthese, 202
  • [48] Three-band superconductivity and the order parameter that breaks time-reversal symmetry
    Stanev, Valentin
    Tesanovic, Zlatko
    PHYSICAL REVIEW B, 2010, 81 (13):
  • [49] Time-reversal symmetry breaking superconductivity in Sr2RuO4
    Luke, GM
    Fudamoto, Y
    Kojima, KM
    Larkin, MI
    Merrin, J
    Nachumi, B
    Uemura, YJ
    Maeno, Y
    Mao, ZQ
    Mori, Y
    Nakamura, H
    Sigrist, M
    NATURE, 1998, 394 (6693) : 558 - 561
  • [50] Time-reversal symmetry breaking in a model of staggered superconductivity in UPt3
    Heid, R
    Bazaliy, YB
    Martisovits, V
    Cox, DL
    PHYSICA B-CONDENSED MATTER, 1996, 223-24 (1-4) : 33 - 35