Mechanism, time-reversal symmetry, and topology of superconductivity in noncentrosymmetric systems

被引:26
|
作者
Scheurer, M. S. [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76131 Karlsruhe, Germany
关键词
2-DIMENSIONAL ELECTRON-GAS; SPIN; STATE; INSULATOR; ALLOYS;
D O I
10.1103/PhysRevB.93.174509
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the possible interaction-induced superconducting instabilities in noncentrosymmetric systems based on symmetries of the normal state. It is proven that pure electron-phonon coupling will always lead to a fully gapped superconductor that does not break time-reversal symmetry and is topologically trivial. We show that topologically nontrivial behavior can be induced by magnetic doping without gapping out the resulting Kramers pair of Majorana edge modes. In the case of superconductivity arising from the particle-hole fluctuations associated with a competing instability, the properties of the condensate crucially depend on the time-reversal behavior of the order parameter of the competing instability. When the order parameter preserves time-reversal symmetry, we obtain exactly the same properties as in the case of phonons. If it is odd under time reversal, the Cooper channel of the interaction will be fully repulsive leading to sign changes of the gap and making spontaneous time-reversal-symmetry breaking possible. To discuss topological properties, we focus on fully gapped time-reversal-symmetric superconductors and derive constraints on possible pairing states that yield necessary conditions for the emergence of topologically nontrivial superconductivity. These conditions might serve as a tool in the search for topological superconductors. We also discuss implications for oxide heterostructures and single-layer FeSe.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Pair Kondo effect: A mechanism for time-reversal symmetry breaking superconductivity in UTe2
    Hazra, Tamaghna
    Volkov, Pavel A.
    PHYSICAL REVIEW B, 2024, 109 (18)
  • [32] Fragile phonon topology on the honeycomb lattice with time-reversal symmetry
    Manes, Juan L.
    PHYSICAL REVIEW B, 2020, 102 (02)
  • [33] Josephson detection of time-reversal symmetry broken superconductivity in SnTe nanowires
    C. J. Trimble
    M. T. Wei
    N. F. Q. Yuan
    S. S. Kalantre
    P. Liu
    H.-J. Han
    M.-G. Han
    Y. Zhu
    J. J. Cha
    L. Fu
    J. R. Williams
    npj Quantum Materials, 6
  • [34] Time-reversal symmetry breaking superconductivity between twisted cuprate superconductors
    Zhao, S. Y. Frank
    Cui, Xiaomeng
    Volkov, Pavel A.
    Yoo, Hyobin
    Lee, Sangmin
    Gardener, Jules A.
    Akey, Austin J.
    Engelke, Rebecca
    Ronen, Yuval
    Zhong, Ruidan
    Gu, Genda
    Plugge, Stephan
    Tummuru, Tarun
    Kim, Miyoung
    Franz, Marcel
    Pixley, Jedediah H.
    Poccia, Nicola
    Kim, Philip
    SCIENCE, 2023, 382 (6677) : 1422 - 1427
  • [35] Josephson detection of time-reversal symmetry broken superconductivity in SnTe nanowires
    Trimble, C. J.
    Wei, M. T.
    Yuan, N. F. Q.
    Kalantre, S. S.
    Liu, P.
    Han, H. -J.
    Han, M. -G.
    Zhu, Y.
    Cha, J. J.
    Fu, L.
    Williams, J. R.
    NPJ QUANTUM MATERIALS, 2021, 6 (01)
  • [36] Non-Abelian topological order in noncentrosymmetric superconductors with broken time-reversal symmetry
    Ghosh, Parag
    Sau, Jay D.
    Tewari, Sumanta
    Das Sarma, S.
    PHYSICAL REVIEW B, 2010, 82 (18)
  • [37] Time-Reversal Symmetry in Non-Hermitian Systems
    Sato, Masatoshi
    Hasebe, Kazuki
    Esaki, Kenta
    Kohmoto, Mahito
    PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 937 - 974
  • [38] On the time-reversal symmetry in pseudo-Hermitian systems
    Choutri, B.
    Cherbal, O.
    Ighezou, F. Z.
    Trifonov, D. A.
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2014, 2014 (11):
  • [39] Hidden time-reversal symmetry in dissipative reciprocal systems
    Silveirinha, Mario G.
    OPTICS EXPRESS, 2019, 27 (10) : 14328 - 14337
  • [40] Humean time-reversal symmetry
    Lopez, Cristian
    Esfeld, Michael
    SYNTHESE, 2023, 202 (02)