Mechanism, time-reversal symmetry, and topology of superconductivity in noncentrosymmetric systems

被引:26
|
作者
Scheurer, M. S. [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76131 Karlsruhe, Germany
关键词
2-DIMENSIONAL ELECTRON-GAS; SPIN; STATE; INSULATOR; ALLOYS;
D O I
10.1103/PhysRevB.93.174509
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the possible interaction-induced superconducting instabilities in noncentrosymmetric systems based on symmetries of the normal state. It is proven that pure electron-phonon coupling will always lead to a fully gapped superconductor that does not break time-reversal symmetry and is topologically trivial. We show that topologically nontrivial behavior can be induced by magnetic doping without gapping out the resulting Kramers pair of Majorana edge modes. In the case of superconductivity arising from the particle-hole fluctuations associated with a competing instability, the properties of the condensate crucially depend on the time-reversal behavior of the order parameter of the competing instability. When the order parameter preserves time-reversal symmetry, we obtain exactly the same properties as in the case of phonons. If it is odd under time reversal, the Cooper channel of the interaction will be fully repulsive leading to sign changes of the gap and making spontaneous time-reversal-symmetry breaking possible. To discuss topological properties, we focus on fully gapped time-reversal-symmetric superconductors and derive constraints on possible pairing states that yield necessary conditions for the emergence of topologically nontrivial superconductivity. These conditions might serve as a tool in the search for topological superconductors. We also discuss implications for oxide heterostructures and single-layer FeSe.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Evidence for time-reversal symmetry-breaking kagome superconductivity
    Deng, Hanbin
    Liu, Guowei
    Guguchia, Z.
    Yang, Tianyu
    Liu, Jinjin
    Wang, Zhiwei
    Xie, Yaofeng
    Shao, Sen
    Ma, Haiyang
    Liege, William
    Bourdarot, Frederic
    Yan, Xiao-Yu
    Qin, Hailang
    Mielke, C.
    Khasanov, R.
    Luetkens, H.
    Wu, Xianxin
    Chang, Guoqing
    Liu, Jianpeng
    Christensen, Morten Holm
    Kreisel, Andreas
    Andersen, Brian Moller
    Huang, Wen
    Zhao, Yue
    Bourges, Philippe
    Yao, Yugui
    Dai, Pengcheng
    Yin, Jia-Xin
    NATURE MATERIALS, 2024, 23 (12) : 1639 - 1644
  • [22] Time-reversal symmetry-breaking nematic superconductivity in FeSe
    Kang, Jian
    Chubukov, Andrey, V
    Fernandes, Rafael M.
    PHYSICAL REVIEW B, 2018, 98 (06)
  • [23] Time-reversal symmetry breaking superconductivity in CaSb2
    Oudah, M.
    Cai, Y.
    Sanchez, M. V. De Toro
    Bannies, J.
    Aronson, M. C.
    Kojima, K. M.
    Bonn, D. A.
    PHYSICAL REVIEW B, 2024, 110 (13)
  • [24] Reply to "Comment on 'Time-reversal symmetry-breaking superconductivity' "
    Ghosh, H
    PHYSICAL REVIEW B, 2001, 63 (22):
  • [25] TEST EXPERIMENT FOR TIME-REVERSAL SYMMETRY-BREAKING SUPERCONDUCTIVITY
    SIGRIST, M
    KIM, YB
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (12) : 4314 - 4317
  • [26] Evidence for Time-Reversal Symmetry Breaking in the Noncentrosymmetric Superconductor LaNiC2
    Hillier, A. D.
    Quintanilla, J.
    Cywinski, R.
    PHYSICAL REVIEW LETTERS, 2009, 102 (11)
  • [27] Time-reversal symmetry breaking in the noncentrosymmetric Zr3Ir superconductor
    Shang, T.
    Ghosh, S. K.
    Zhao, J. Z.
    Chang, L-J
    Baines, C.
    Lee, M. K.
    Gawryluk, D. J.
    Shi, M.
    Medarde, M.
    Quintanilla, J.
    Shiroka, T.
    PHYSICAL REVIEW B, 2020, 102 (02)
  • [28] Time-reversal symmetry breaking in the noncentrosymmetric superconductor Re6Ti
    Singh, D.
    Sajilesh, K. P.
    Barker, J. A. T.
    Paul, D. Mck
    Hillier, A. D.
    Singh, R. P.
    PHYSICAL REVIEW B, 2018, 97 (10)
  • [29] A COMMENT ON TIME-REVERSAL SYMMETRY OF CHIRAL SYSTEMS
    TSAI, MS
    OU, MC
    YANG, IC
    CHEN, JC
    HWANG, WA
    LEE, TS
    CHEMICAL PHYSICS LETTERS, 1990, 173 (5-6) : 485 - 488
  • [30] Time-reversal symmetry in dynamical systems: A survey
    Lamb, JSW
    Roberts, JAG
    PHYSICA D, 1998, 112 (1-2): : 1 - 39