Timed-Elastic-Bands for Time-Optimal Point-to-Point Nonlinear Model Predictive Control

被引:0
|
作者
Roesmann, Christoph [1 ]
Hoffmann, Frank [1 ]
Bertram, Torsten [1 ]
机构
[1] Tech Univ Dortmund, Inst Control Theory & Syst Engn, D-44227 Dortmund, Germany
关键词
OPTIMIZATION; STABILITY; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This contribution presents a novel approach for nonlinear time-optimal model predictive control (MPC) based on Timed-Elastic-Bands (TEB). The TEB merges the states, control inputs and time intervals into a joint trajectory representation which enables planning of time-optimal trajectories in the context of model predictive control. Model predictive control integrates the planning of the optimal trajectory with state feedback in the control loop. The TEB approach formulates the fixed horizon optimal control problem for point-to-point transitions as a nonlinear program. The comparative analysis of the TEB approach with state-of-the-art approaches demonstrates its computational efficiency. The TEB approach generates a trajectory that approximates the analytical time-optimal trajectory in few iterations. This efficiency enables the refinement of the planned state and control sequence within the underlying closed-loop control during runtime.
引用
收藏
页码:3352 / 3357
页数:6
相关论文
共 50 条
  • [41] CONSTRAINED FAST POINT-TO-POINT CONTROL OF A VISCO-ELASTIC ACTUATOR
    Lu, Lu
    Wang, Cong
    [J]. 2016 INTERNATIONAL SYMPOSIUM ON FLEXIBLE AUTOMATION (ISFA), 2016, : 370 - 377
  • [42] Data-driven predictive point-to-point iterative learning control
    Zhang, Xueming
    Hou, Zhongsheng
    [J]. NEUROCOMPUTING, 2023, 518 : 431 - 439
  • [43] Energy-Optimal Time Allocation of a Series of Point-to-Point Motions
    Janssens, Pieter
    Pipeleers, Goele
    Diehl, Moritz
    Swevers, Jan
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (06) : 2432 - 2435
  • [44] Model Predictive Contouring Control for Time-Optimal Quadrotor Flight
    Romero, Angel
    Sun, Sihao
    Foehn, Philipp
    Scaramuzza, Davide
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (06) : 3340 - 3356
  • [45] Time-optimal control of a small mass point without environmental resistance
    A. R. Danilin
    O. O. Kovrizhnykh
    [J]. Doklady Mathematics, 2013, 88 : 465 - 467
  • [46] STEPPING MOTOR DYNAMICS AT TIME-OPTIMAL POINT-TO-POINT MOTIONS .2. THE MOST EFFICIENT BRAKING-TIME AND FOLLOW-UP
    LINK, W
    [J]. ARCHIV FUR ELEKTROTECHNIK, 1983, 66 (01): : 19 - 27
  • [47] OPTIMAL POINT-TO-POINT MOTION CONTROL OF ROBOTS WITH REDUNDANT DEGREES OF FREEDOM
    FENTON, RG
    BENHABIB, B
    GOLDENBERG, AA
    [J]. JOURNAL OF ENGINEERING FOR INDUSTRY-TRANSACTIONS OF THE ASME, 1986, 108 (02): : 120 - 126
  • [48] Time-optimal control of a small mass point without environmental resistance
    Danilin, A. R.
    Kovrizhnykh, O. O.
    [J]. DOKLADY MATHEMATICS, 2013, 88 (01) : 465 - 467
  • [49] Optimal trajectory formation and control of human arm point-to-point movement
    Sun, Pengwei
    Wang, Shimin
    Wang, Qi
    Fang, Jie
    [J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2010, 36 (07): : 826 - 829
  • [50] Beating the Spread: Time-Optimal Point Meshing
    Miller, Gary L.
    Phillips, Todd
    Sheehy, Donald R.
    [J]. COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 321 - 330