Viscosity Approximation of PDMS Using Weibull Function

被引:11
|
作者
Chmielowiec, Andrzej [1 ]
Wos, Weronika [1 ]
Gumieniak, Justyna [1 ]
机构
[1] Rzeszow Univ Technol, Fac Mech & Technol, Ul Kwiatkowskiego 4, PL-37450 Stalowa Wola, Poland
关键词
poly(dimethylosiloxane); damping fluid; viscous damper; TVD; automotive; TEMPERATURE; FAILURE; POLY(DIMETHYLSILOXANE); POLYDIMETHYLSILOXANES; DEPENDENCE; BEHAVIOR; MODELS;
D O I
10.3390/ma14206060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The viscosity of a fluid is one of its basic physico-chemical properties. The modelling of this property as a function of temperature has been the subject of intensive studies. The knowledge of how viscosity and temperature variation are related is particularly important for applications that use the intrinsic friction of fluids to dissipate energy, for example viscous torsional vibration dampers using high viscosity poly(dimethylsiloxane) as a damping factor. This article presents a new method for approximating the dynamic viscosity of poly(dimethylsiloxane). It is based on the three-parameter Weibull function that far better reflects the relationship between viscosity and temperature compared with the models used so far. Accurate mapping of dynamic viscosity is vitally important from the point of view of the construction of viscous dampers, as it allows for accurate estimation of their efficiency in the energy dissipation process.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Function approximation using generalized adalines
    Wu, Jiann-Ming
    Lin, Zheng-Han
    Hsu, Pei-Hsun
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (03): : 541 - 558
  • [22] Smart Sensor Using Function Approximation
    Shaikh, Kader B. T.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 1223 - 1226
  • [23] Function Approximation Using Haar Wavelets
    Majak, Juri
    Eerme, Martin
    Haavajoe, Anti
    Karunanidhi, Ramachandran
    Scholz, Dieter
    Lepik, Anti
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [24] POISSON APPROXIMATION AND WEIBULL ASYMPTOTICS IN THE GEOMETRY OF NUMBERS
    Bjorklund, M. I. C. H. A. E. L.
    Gorodnik, A. L. E. X. A. N. D. E. R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (03) : 2155 - 2180
  • [25] A SIMPLE APPROXIMATION FOR IFR WEIBULL RENEWAL FUNCTIONS
    SPEARMAN, ML
    MICROELECTRONICS AND RELIABILITY, 1989, 29 (01): : 73 - 80
  • [26] Bayesian Analysis of Two-Component Mixture of Weibull Distributions Using Approximation Techniques
    Aslam, Muhammad
    Feroze, Navid
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (03) : 523 - 536
  • [27] Bayesian Analysis of Two-Component Mixture of Weibull Distributions Using Approximation Techniques
    Muhammad Aslam
    Navid Feroze
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 : 523 - 536
  • [28] Shear viscosity in the postquasistatic approximation
    Peralta, C.
    Rosales, L.
    Rodriguez-Mueller, B.
    Barreto, W.
    PHYSICAL REVIEW D, 2010, 81 (10)
  • [29] NONUNIFORMITY OF VANISHING VISCOSITY APPROXIMATION
    FREISTUHLER, H
    APPLIED MATHEMATICS LETTERS, 1993, 6 (02) : 35 - 41
  • [30] APPROXIMATION VISCOSITY OF DIFFERENCE SCHEMES
    YANENKO, NN
    SHOKIN, YI
    DOKLADY AKADEMII NAUK SSSR, 1968, 182 (02): : 280 - &