Viscosity Approximation of PDMS Using Weibull Function

被引:11
|
作者
Chmielowiec, Andrzej [1 ]
Wos, Weronika [1 ]
Gumieniak, Justyna [1 ]
机构
[1] Rzeszow Univ Technol, Fac Mech & Technol, Ul Kwiatkowskiego 4, PL-37450 Stalowa Wola, Poland
关键词
poly(dimethylosiloxane); damping fluid; viscous damper; TVD; automotive; TEMPERATURE; FAILURE; POLY(DIMETHYLSILOXANE); POLYDIMETHYLSILOXANES; DEPENDENCE; BEHAVIOR; MODELS;
D O I
10.3390/ma14206060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The viscosity of a fluid is one of its basic physico-chemical properties. The modelling of this property as a function of temperature has been the subject of intensive studies. The knowledge of how viscosity and temperature variation are related is particularly important for applications that use the intrinsic friction of fluids to dissipate energy, for example viscous torsional vibration dampers using high viscosity poly(dimethylsiloxane) as a damping factor. This article presents a new method for approximating the dynamic viscosity of poly(dimethylsiloxane). It is based on the three-parameter Weibull function that far better reflects the relationship between viscosity and temperature compared with the models used so far. Accurate mapping of dynamic viscosity is vitally important from the point of view of the construction of viscous dampers, as it allows for accurate estimation of their efficiency in the energy dissipation process.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] ANALYSIS OF THE WEIBULL DISTRIBUTION FUNCTION
    KITTL, P
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (01): : 221 - 222
  • [32] ESTIMATION OF THE WEIBULL RENEWAL FUNCTION
    CARD, J
    CHAN, W
    MICROELECTRONICS AND RELIABILITY, 1988, 28 (05): : 751 - 756
  • [33] ANALYSIS OF THE WEIBULL DISTRIBUTION FUNCTION
    CHANG, KT
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1982, 49 (02): : 450 - 451
  • [34] METEORITIC CHONDRULES AND THE WEIBULL FUNCTION
    MARTIN, PM
    HUGHES, DW
    EARTH AND PLANETARY SCIENCE LETTERS, 1980, 49 (02) : 175 - 180
  • [35] MODELING THE POTENTIAL FOR BORON AMELIORATION OF ALUMINUM TOXICITY USING THE WEIBULL FUNCTION
    TAYLOR, GJ
    MACFIE, SM
    CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1994, 72 (08): : 1187 - 1196
  • [36] Modelling of Wind Speed Data using Weibull Distribution Function in Dewas
    Rathore, Arun
    Kumar, Anupam
    Patel, Satyam
    Khatakar, Poonam
    Patidar, N. P.
    2022 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE, IPRECON, 2022,
  • [37] ON RENEWAL FUNCTION FOR WEIBULL DISTRIBUTION
    SMITH, WL
    LEADBETTER, MR
    TECHNOMETRICS, 1963, 5 (03) : 393 - &
  • [38] A wind energy analysis of Grenada: an estimation using the 'Weibull' density function
    Weisser, D
    RENEWABLE ENERGY, 2003, 28 (11) : 1803 - 1812
  • [39] DESCRIPTION OF THE DIAMETER DISTRIBUTION OF AGROFOREST SYSTEMS FOR USING THE FUNCTION WEIBULL AND HYPERBOLIC
    Breda Binoti, Daniel Henrique
    Marques da Silva Binoti, Mayra Luiza
    Leite, Helio Garcia
    Nogueira Melido, Raul Cesar
    dos Santos, Fabiano Lourenco
    REVISTA ARVORE, 2012, 36 (02): : 349 - 356
  • [40] Hierarchical structure for function approximation using radial basis function
    Awad, M.
    Pomares, H.
    Rojas, I.
    Herrera, L.J.
    Guillen, A.
    Valenzuela, O.
    WSEAS Transactions on Mathematics, 2006, 5 (01) : 75 - 80