Shear viscosity in the postquasistatic approximation

被引:6
|
作者
Peralta, C. [1 ,5 ]
Rosales, L. [2 ]
Rodriguez-Mueller, B. [3 ]
Barreto, W. [4 ]
机构
[1] Deutsch Wetterdienst, D-63067 Offenbach, Germany
[2] Univ Expt Politecn Antonio Jose de Sucre, Lab Fis Computac, Puerto Ordaz, Venezuela
[3] San Diego State Univ, Coll Sci, Computat Sci Res Ctr, San Diego, CA 92182 USA
[4] Univ Los Andes, Fac Ciencias, Ctr Fis Fundamental, Merida 5101, Venezuela
[5] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
关键词
RADIATING VISCOUS SPHERES; GRAVITATIONAL COLLAPSE; THERMAL CONDUCTION; FLUID SPHERES; EVOLUTION; THERMODYNAMICS; NONSTATIONARY; CONTRACTION; RELATIVITY; FIELD;
D O I
10.1103/PhysRevD.81.104021
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of anisotropic nonadiabatic radiating and dissipative distributions in general relativity. Dissipation is described by viscosity and free-streaming radiation, assuming an equation of state to model anisotropy induced by the shear viscosity. We match the interior solution, in noncomoving coordinates, with the Vaidya exterior solution. Two simple models are presented, based on the Schwarzschild and Tolman VI solutions, in the nonadiabatic and adiabatic limit. In both cases, the eventual collapse or expansion of the distribution is mainly controlled by the anisotropy induced by the viscosity.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Heat flow in the postquasistatic approximation
    Rodriguez-Mueller, B.
    Peralta, C.
    Barreto, W.
    Rosales, L.
    PHYSICAL REVIEW D, 2010, 82 (04):
  • [2] Nonadiabatic charged spherical evolution in the postquasistatic approximation
    Rosales, L.
    Barreto, W.
    Peralta, C.
    Rodriguez-Mueller, B.
    PHYSICAL REVIEW D, 2010, 82 (08):
  • [3] Lubrication Approximation for Fluids with Shear-Dependent Viscosity
    Pereira, Bruno M. M.
    Dias, Goncalo A. S.
    Cal, Filipe S.
    Rajagopal, Kumbakonam R.
    Videman, Juha H.
    FLUIDS, 2019, 4 (02)
  • [4] Shear viscosity expression for a graphene system in relaxation time approximation
    Aung, Cho Win
    Win, Thandar Zaw
    Khandal, Gaurav
    Ghosh, Sabyasachi
    PHYSICAL REVIEW B, 2023, 108 (23)
  • [5] On physical optics approximation of stratified shear flows with eddy viscosity
    Karjanto, Natanael
    PHYSICS OF FLUIDS, 2021, 33 (05)
  • [6] SHEAR VISCOSITY OF LIQUID MIXTURES IN HARD-SPHERE APPROXIMATION
    MCDONALD, IR
    PHYSICA, 1973, 65 (03): : 630 - 633
  • [7] Shear flow predictions of a hookean dumbbell with internal viscosity using a Gaussian approximation
    Schieber, J.D.
    Proceedings of the International Congress on Rheology, 1992,
  • [8] The Empirical Enskog-Like Approximation of Shear Viscosity in the Penetrable-Sphere Model
    Jung, Byung-Doo
    Jeong, Seung-Won
    Suh, Soong-Hyuck
    Liu, Hong-Lai
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2012, 33 (06): : 2047 - 2050
  • [9] STRUCTURE OF APPROXIMATION VISCOSITY
    DAVYDOV, IM
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (04): : 812 - 816
  • [10] Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity
    Hirn, Adrian
    Lanzendoerfer, Martin
    Stebel, Jan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) : 1604 - 1634