Shear viscosity in the postquasistatic approximation

被引:6
|
作者
Peralta, C. [1 ,5 ]
Rosales, L. [2 ]
Rodriguez-Mueller, B. [3 ]
Barreto, W. [4 ]
机构
[1] Deutsch Wetterdienst, D-63067 Offenbach, Germany
[2] Univ Expt Politecn Antonio Jose de Sucre, Lab Fis Computac, Puerto Ordaz, Venezuela
[3] San Diego State Univ, Coll Sci, Computat Sci Res Ctr, San Diego, CA 92182 USA
[4] Univ Los Andes, Fac Ciencias, Ctr Fis Fundamental, Merida 5101, Venezuela
[5] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
关键词
RADIATING VISCOUS SPHERES; GRAVITATIONAL COLLAPSE; THERMAL CONDUCTION; FLUID SPHERES; EVOLUTION; THERMODYNAMICS; NONSTATIONARY; CONTRACTION; RELATIVITY; FIELD;
D O I
10.1103/PhysRevD.81.104021
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of anisotropic nonadiabatic radiating and dissipative distributions in general relativity. Dissipation is described by viscosity and free-streaming radiation, assuming an equation of state to model anisotropy induced by the shear viscosity. We match the interior solution, in noncomoving coordinates, with the Vaidya exterior solution. Two simple models are presented, based on the Schwarzschild and Tolman VI solutions, in the nonadiabatic and adiabatic limit. In both cases, the eventual collapse or expansion of the distribution is mainly controlled by the anisotropy induced by the viscosity.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Macroscopic and molecular shear viscosity
    Fabelinskij, I.L.
    Uspekhi Fizicheskikh Nauk, 167 (07): : 721 - 735
  • [42] Shear viscosity of interacting graphene
    Pongsangangan, Kitinan
    Cosme, Pedro
    Di Salvo, Emanuele
    Fritz, Lars
    PHYSICAL REVIEW B, 2024, 110 (04)
  • [43] Shear viscosity in a gluon gas
    Xu, Zhe
    Greiner, Carsten
    PHYSICAL REVIEW LETTERS, 2008, 100 (17)
  • [44] SHEAR VISCOSITY IN DIATOMIC FLUIDS
    WHITTLE, M
    CLARKE, JHR
    MOLECULAR PHYSICS, 1983, 49 (05) : 1199 - 1208
  • [45] The shear viscosity in anisotropic phases
    Jain, Sachin
    Samanta, Rickmoy
    Trivedi, Sandip P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10):
  • [46] Shear viscosity of nuclear matter
    Magner, A. G.
    Gorenstein, M. I.
    Grygoriev, U. V.
    Plujko, V. A.
    PHYSICAL REVIEW C, 2016, 94 (05)
  • [47] Shear viscosity of the quark matter
    Iwasaki, Masaharu
    Ohnishi, Hiromasa
    Fukutome, Takahiko
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2008, 35 (03)
  • [48] Microscopic and molecular shear viscosity
    Fabelinskii, IL
    USPEKHI FIZICHESKIKH NAUK, 1997, 167 (07): : 721 - 733
  • [49] An empirical equation for shear viscosity of shear thickening fluids
    Shende, Takshak
    Niasar, Vahid J.
    Babaei, Masoud
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 325
  • [50] MEAN SPHERICAL MODEL APPROXIMATION - SURFACE-TENSION, SHEAR VISCOSITY AND SELF-DIFFUSION COEFFICIENT OF LIQUIDS
    RAO, RVG
    JOARDER, RN
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE-PART A, 1977, 51 (05): : 317 - 323