A POSTERIORI ANALYSIS OF ITERATIVE ALGORITHMS FOR NAVIER-STOKES PROBLEM

被引:12
|
作者
Bernardi, Christine [1 ,2 ]
Dakroub, Jad [1 ,2 ,3 ]
Mansour, Gihane [3 ]
Sayah, Toni [3 ]
机构
[1] CNRS, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Univ Paris 06, 4 Pl Jussieu, F-75252 Paris 05, France
[3] Univ St Joseph, Fac Sci, Unite Rech EGFEM, Beirut, Lebanon
关键词
A posteriori error estimation; Navier-Stokes problem; iterative method; FINITE-ELEMENT APPROXIMATIONS; NONLINEAR PROBLEMS; ERROR ESTIMATION; EQUATIONS; FLOW;
D O I
10.1051/m2an/2015062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with a posteriori error estimates for the Navier-Stokes equations. We propose a finite element discretization relying on the Galerkin method and we solve the discrete problem using an iterative method. Two sources of error appear, the discretization error and the linearization error. Balancing these two errors is very important to avoid performing an excessive number of iterations. Several numerical tests are provided to evaluate the efficiency of our indicators.
引用
收藏
页码:1035 / 1055
页数:21
相关论文
共 50 条
  • [1] A posteriori analysis of the Newton method applied to the Navier-Stokes problem
    Dakroub, Jad
    Faddoul, Joanna
    Sayah, Toni
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 63 (1-2) : 411 - 437
  • [2] A posteriori error analysis for Navier-Stokes equations coupled with Darcy problem
    Hadji, M. L.
    Assala, A.
    Nouri, F. Z.
    CALCOLO, 2015, 52 (04) : 559 - 576
  • [3] On a posteriori error estimates for the stationary Navier-Stokes problem
    Repin S.
    Journal of Mathematical Sciences, 2008, 150 (1) : 1885 - 1889
  • [4] A posteriori error analysis for solving the Navier-Stokes problem and convection-diffusion equation
    Agroum, Rahma
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (02) : 401 - 418
  • [5] On the global convergence rate of an iterative method for the Navier-Stokes problem
    M. E. Bogovskii
    Doklady Mathematics, 2012, 85 : 191 - 195
  • [6] On the global convergence rate of an iterative method for the Navier-Stokes problem
    Bogovskii, M. E.
    DOKLADY MATHEMATICS, 2012, 85 (02) : 191 - 195
  • [7] A POSTERIORI ESTIMATES FOR EULER AND NAVIER-STOKES EQUATIONS
    Morosi, Carlo
    Pernici, Mario
    Pizzocchero, Livid
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 847 - 855
  • [8] A posteriori error estimation for Navier-Stokes equations
    Elakkad, A.
    Guessous, N.
    Elkhalfi, A.
    NEW ASPECTS OF FLUID MECHANICS, HEAT TRANSFER AND ENVIRONMENT, 2010, : 50 - 60
  • [9] A posteriori analysis of iterative algorithms for a nonlinear problem
    Christine Bernardi
    Jad Dakroub
    Gihane Mansour
    Toni Sayah
    Journal of Scientific Computing, 2015, 65 : 672 - 697
  • [10] A posteriori analysis of iterative algorithms for a nonlinear problem
    Bernardi, Christine
    Dakroub, Jad
    Mansour, Gihane
    Sayah, Toni
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (02) : 672 - 697