A POSTERIORI ANALYSIS OF ITERATIVE ALGORITHMS FOR NAVIER-STOKES PROBLEM

被引:12
|
作者
Bernardi, Christine [1 ,2 ]
Dakroub, Jad [1 ,2 ,3 ]
Mansour, Gihane [3 ]
Sayah, Toni [3 ]
机构
[1] CNRS, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Univ Paris 06, 4 Pl Jussieu, F-75252 Paris 05, France
[3] Univ St Joseph, Fac Sci, Unite Rech EGFEM, Beirut, Lebanon
关键词
A posteriori error estimation; Navier-Stokes problem; iterative method; FINITE-ELEMENT APPROXIMATIONS; NONLINEAR PROBLEMS; ERROR ESTIMATION; EQUATIONS; FLOW;
D O I
10.1051/m2an/2015062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with a posteriori error estimates for the Navier-Stokes equations. We propose a finite element discretization relying on the Galerkin method and we solve the discrete problem using an iterative method. Two sources of error appear, the discretization error and the linearization error. Balancing these two errors is very important to avoid performing an excessive number of iterations. Several numerical tests are provided to evaluate the efficiency of our indicators.
引用
收藏
页码:1035 / 1055
页数:21
相关论文
共 50 条
  • [21] A posteriori error estimates of stabilized finite element method for the steady Navier-Stokes problem
    Zhang, Tong
    Zhao, Xin
    Lei, Gang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9081 - 9092
  • [22] A POSTERIORI ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM OF THE STATIONARY NAVIER-STOKES EQUATIONS
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 2898 - 2923
  • [23] On the Robin problem for Stokes and Navier-Stokes systems
    Russo, Remigio
    Tartaglione, Alfonsina
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (05): : 701 - 716
  • [24] Stokes problem for the generalized Navier-Stokes equations
    Bourchtein, A
    Bourchtein, L
    COMPUTATIONAL SCIENCE-ICCS 2002, PT III, PROCEEDINGS, 2002, 2331 : 813 - 819
  • [25] Iterative methods for Navier-Stokes inverse problems
    O'Connor, Liam
    Lecoanet, Daniel
    Anders, Evan H.
    Augustson, Kyle C.
    Burns, Keaton J.
    Vasil, Geoffrey M.
    Oishi, Jeffrey S.
    Brown, Benjamin P.
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [26] ITERATIVE LINEARIZATION OF THE EVOLUTION NAVIER-STOKES EQUATIONS
    Golichev, I. I.
    UFA MATHEMATICAL JOURNAL, 2012, 4 (04): : 68 - 77
  • [27] A posteriori error analysis of a fully-mixed formulation for the Navier-Stokes/Darcy coupled problem with nonlinear viscosity
    Caucao, Sergio
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 315 : 943 - 971
  • [28] A posteriori error analysis of a momentum conservative Banach spaces based mixed-FEM for the Navier-Stokes problem
    Camano, Jessika
    Caucao, Sergio
    Oyarzua, Ricardo
    Villa-Fuentes, Segundo
    APPLIED NUMERICAL MATHEMATICS, 2022, 176 : 134 - 158
  • [29] Semi-conjugate residual method for iterative solving the Navier-Stokes problem
    Y. L. Gurieva
    Optoelectronics, Instrumentation and Data Processing, 2007, 43 (2) : 177 - 181
  • [30] Semi-Conjugate Residual Method for Iterative Solving the Navier-Stokes Problem
    Gurieva, Y. L.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2007, 43 (02) : 177 - 181