Direct Analysis in Real Time Coupled to Multiplexed Drift Tube Ion Mobility Spectrometry for Detecting Toxic Chemicals

被引:52
|
作者
Harris, Glenn A. [1 ]
Kwasnik, Mark [1 ]
Fernandez, Facundo M. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
关键词
DESORPTION ELECTROSPRAY-IONIZATION; ATMOSPHERIC-PRESSURE IONIZATION; MASS-SPECTROMETRY; RESOLVING POWER; WARFARE AGENTS; CHROMATOGRAPHY; FORMULATIONS; AIR;
D O I
10.1021/ac102246h
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Current and future chemical threats to homeland security motivate the need for new chemical detection systems to provide border, transportation, and workplace security. We present the first successful coupling of a commercial direct analysis in real time (DART) ion source to a resistive glass monolithic drift tube ion mobility spectrometer (DTIMS) as the basis for a low maintenance, versatile, and robust chemical monitoring system. in situ ionization within the electric field gradient of the instrument enhances sensitivity and provides a safe sampling strategy. The instrument uses nitrogen as both the DART discharge and DTIMS drift gases, allowing for a high electric field to be used for ion separation while keeping cost-of-use low. With the use of a traditional signal averaging acquisition mode, the 95% probability of detection (POD) for analytes sampled from melting point capillary tubes was 11.81% v/v for DMMP, 1.13% v/v for 2-CEES, and 10.61 mM for methamidophos. Sensitivity was improved via a prototype transmission mode geometry interface, resulting in an almost 2 orders of magnitude decrease in the POD level for DMMP (0.28% v/v). As an alternative to transmission mode operation digital multiplexing of the DTIMS ion injection step was also implemented, finding a 3-fold improvement in signal-to-noise ratios for 200 mu s gate injections and a 4.5-fold for 400 mu s gate injections.
引用
收藏
页码:1908 / 1915
页数:8
相关论文
共 50 条
  • [31] Flexible Drift Tube for High Resolution Ion Mobility Spectrometry (Flex-DT-IMS)
    Smith, Barry L.
    Boisdon, Cedric
    Young, Iain S.
    Praneenararat, Thanit
    Vilaivan, Tirayut
    Maher, Simon
    ANALYTICAL CHEMISTRY, 2020, 92 (13) : 9104 - 9112
  • [32] Electric Modeling of Charged Particles Trajectories in the Drift Tube of Ion Mobility Spectrometer for Hazardous Industrial Chemicals Detection
    Samotaev, Nikolay
    Pershenkov, Vecheslav
    Belyakov, Vladimir
    Vasilyev, Valeriy
    Golovin, Anatoliy
    Ivanov, Igor
    Malkin, Evgeniy
    Gromov, Evgeniy
    28TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS (EUROSENSORS 2014), 2014, 87 : 436 - 439
  • [33] Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry
    Wang, Bing
    Valentine, Steve
    Plasencia, Manolo
    Raghuraman, Sriram
    Zhang, Xiang
    BMC BIOINFORMATICS, 2010, 11
  • [34] Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry
    Bing Wang
    Steve Valentine
    Manolo Plasencia
    Sriram Raghuraman
    Xiang Zhang
    BMC Bioinformatics, 11
  • [35] A Modified Drift Tube Ion Mobility-Mass Spectrometer for Charge-Multiplexed Collision-Induced Unfolding
    Vallejo, Daniel D.
    Polasky, Daniel A.
    Kurulugama, Ruwan T.
    Eschweiler, Joseph D.
    Fjeldsted, John C.
    Ruotolo, Brandon T.
    ANALYTICAL CHEMISTRY, 2019, 91 (13) : 8137 - 8146
  • [36] Improving glycan isomeric separation via metal ion incorporation for drift tube ion mobility-mass spectrometry
    Xie, Chengyi
    Wu, Qidi
    Zhang, Shulei
    Wang, Chenlu
    Gao, Wenqing
    Yu, Jiancheng
    Tang, Keqi
    TALANTA, 2020, 211
  • [37] An Interlaboratory Evaluation of Drift Tube Ion Mobility-Mass Spectrometry Collision Cross Section Measurements
    Stow, Sarah M.
    Causon, Tim J.
    Zheng, Xueyun
    Kurulugama, Ruwan T.
    Mairinger, Teresa
    May, Jody C.
    Rennie, Emma E.
    Baker, Erin S.
    Smith, Richard D.
    McLean, John A.
    Hann, Stephan
    Fjeldsted, John C.
    ANALYTICAL CHEMISTRY, 2017, 89 (17) : 9048 - 9055
  • [38] An economical setup for atmospheric pressure chemical ionization drift tube ion-mobility mass spectrometry
    Raju, Chamarthi Maheswar
    Buchowiecki, Krzysztof
    Urban, Pawel L.
    ANALYTICA CHIMICA ACTA, 2023, 1268
  • [39] Atmospheric Pressure Drift Tube Ion Mobility-Orbitrap Mass Spectrometry: Initial Performance Characterization
    Keelor, Joel D.
    Zambrzycki, Stephen
    Li, Anyin
    Clowers, Brian H.
    Fernandez, Facundo M.
    ANALYTICAL CHEMISTRY, 2017, 89 (21) : 11301 - 11309
  • [40] Immunoaffinity nanogold coupled with direct analysis in real time (DART) mass spectrometry for analytical toxicology
    Evans-Nguyen, K. M.
    Hargraves, T. L.
    Quinto, A. N.
    ANALYTICAL METHODS, 2017, 9 (34) : 4954 - 4957