Axial Curvature Cycles of Surfaces Immersed in R4

被引:0
|
作者
Garcia, R. [1 ]
Sotomayor, J. [2 ]
Spindola, F. [3 ]
机构
[1] Univ Fed Goias, Inst Matemat & Estat, Campus Samambaia, BR-74690900 Goiania, Go, Brazil
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, SP, Brazil
[3] Univ Fed Maranhao, Ctr Ciencias Exatas & Tecnol, BR-65080805 Sao Luis, MA, Brazil
关键词
axial principal lines; axial mean lines; principal axial cycle; axiumbilic point; STRUCTURALLY STABLE CONFIGURATIONS; LINES;
D O I
10.1134/S1995080222040126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper are established integral expressions, in terms of geometric invariants along a closed curve-a cycle-of axial curvature, which characterize hyperbolicity i.e. non unitiy of the derivative for the Poincare first return map-holonomy-at the axial curvatue cycle on a regular surface M immersed in R-4. A proof of the genericity of hyperbolicity is given here. An integral expression for the second derivative in terms of higher order geometric invariants along a non-hyperbolic axial curvature cycle is also established in this paper. This work improves results obtained by the first and second authors.
引用
收藏
页码:78 / 97
页数:20
相关论文
共 50 条
  • [41] REFLEXION MAPS AND GEOMETRY OF SURFACES IN R4
    Giblin, P. J.
    Janeczko, S.
    Ruas, M. A. S.
    JOURNAL OF SINGULARITIES, 2020, 21 : 84 - 96
  • [42] Knots and the topology of singular surfaces in R4
    Mendes, R.
    Nuno-Ballesteros, J. J.
    REAL AND COMPLEX SINGULARITIES, 2016, 675 : 229 - 239
  • [43] Pseudo-simple heteroclinic cycles in R4
    Chossat, Pascal
    Lohse, Alexander
    Podvigina, Olga
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 372 : 1 - 21
  • [44] THE GEOMETRY OF CORANK 1 SURFACES IN R4
    Benedini Riul, P.
    Ruas, M. A. S.
    Oset Sinha, R.
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (03): : 767 - 795
  • [45] SINGULARITY KNOTS OF MINIMAL SURFACES IN R4
    Soret, Marc
    Ville, Marina
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (04) : 513 - 546
  • [46] Birth of bitangencies in a family of surfaces in R4
    Dreibelbis, Daniel
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (04) : 321 - 331
  • [47] All superconformal surfaces in R4 in terms of minimal surfaces
    Dajczer, Marcos
    Tojeiro, Ruy
    MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (04) : 869 - 890
  • [48] THE GAUSS MAP OF SURFACES IN R3 AND R4
    HOFFMAN, DA
    OSSERMAN, R
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1985, 50 (JAN) : 27 - 56
  • [49] TRAM SLATING SOLITONS FOR THE ME IN CURVATURE FLOW IN R4
    Lee, Hojoo
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (03) : 491 - 499
  • [50] Harmonic mean curvature lines on surfaces immersed in R3
    Garcia, R
    Sotomayor, J
    BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2003, 34 (02): : 303 - 331