SINGULARITY KNOTS OF MINIMAL SURFACES IN R4

被引:4
|
作者
Soret, Marc [1 ]
Ville, Marina [2 ]
机构
[1] Univ Tours, Dept Math, F-37000 Tours, France
[2] Univ Paris, Inst Math Jussieu, CNRS, UMR 7586, F-75205 Paris 13, France
关键词
Minimal surfaces; knots; braids; branch points; harmonic; conformal; singularities;
D O I
10.1142/S0218216511009406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study knots in S-3 obtained by the intersection of a minimal surface in R-4 with a small 3-sphere centered at a branch point. We construct new examples of minimal knots. In particular we show the existence of non-fibered minimal knots. We show that simple minimal knots are either reversible or fully amphicheiral; this yields an obstruction for a given knot to be a simple minimal knot. Properties and invariants of these knots such as the algebraic crossing number of a braid representative and the Alexander polynomial are studied.
引用
收藏
页码:513 / 546
页数:34
相关论文
共 50 条
  • [1] Knots and the topology of singular surfaces in R4
    Mendes, R.
    Nuno-Ballesteros, J. J.
    [J]. REAL AND COMPLEX SINGULARITIES, 2016, 675 : 229 - 239
  • [2] Algebraic minimal surfaces in R4
    Small, A
    [J]. MATHEMATICA SCANDINAVICA, 2004, 94 (01) : 109 - 124
  • [3] On the size of stable minimal surfaces in R4
    Aiolfi, Ari
    Soret, Marc
    Ville, Marina
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (02) : 1155 - 1170
  • [4] All superconformal surfaces in R4 in terms of minimal surfaces
    Dajczer, Marcos
    Tojeiro, Ruy
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (04) : 869 - 890
  • [5] Weakly minimal area of cubical 2-knots on R4
    Baray, Ana
    Hinojosa, Gabriela
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2019, 264 : 276 - 289
  • [6] Minimal Surfaces in R4 like the Lagrangian Catenoid
    Lee, Jaehoon
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [7] ON SURFACES IN R4
    SEAMAN, W
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (03) : 467 - 470
  • [8] A THEOREM OF BERNSTEIN TYPE FOR MINIMAL-SURFACES IN R4
    KAWAI, S
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1984, 36 (03) : 377 - 384
  • [9] Stable minimal surfaces in R4 with degenerate Gauss map
    Shoda, T
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) : 1285 - 1293
  • [10] On a Minimal Hypersurface in R4
    Khanfer, Ammar
    Lancaster, Kirk E.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 2241 - 2252