SINGULARITY KNOTS OF MINIMAL SURFACES IN R4

被引:4
|
作者
Soret, Marc [1 ]
Ville, Marina [2 ]
机构
[1] Univ Tours, Dept Math, F-37000 Tours, France
[2] Univ Paris, Inst Math Jussieu, CNRS, UMR 7586, F-75205 Paris 13, France
关键词
Minimal surfaces; knots; braids; branch points; harmonic; conformal; singularities;
D O I
10.1142/S0218216511009406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study knots in S-3 obtained by the intersection of a minimal surface in R-4 with a small 3-sphere centered at a branch point. We construct new examples of minimal knots. In particular we show the existence of non-fibered minimal knots. We show that simple minimal knots are either reversible or fully amphicheiral; this yields an obstruction for a given knot to be a simple minimal knot. Properties and invariants of these knots such as the algebraic crossing number of a braid representative and the Alexander polynomial are studied.
引用
下载
收藏
页码:513 / 546
页数:34
相关论文
共 50 条
  • [21] Lipschitz geometry of surface germs in R4: metric knots
    Birbrair, Lev
    Brandenbursky, Michael
    Gabrielov, Andrei
    SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (03):
  • [22] MINIMAL PIECEWISE LINEAR CONES IN R4
    Valfells, Asgeir
    MATHEMATICA SCANDINAVICA, 2024, 130 (01) : 149 - 160
  • [23] Stable anisotropic minimal hypersurfaces in R4
    Chodosh, Otis
    Li, Chao
    FORUM OF MATHEMATICS PI, 2023, 11
  • [24] Minimal submanifolds in R4 with a GCK structure
    Munteanu, Marian-Ioan
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (01) : 61 - 78
  • [25] MINIMAL GRAPHS IN R4 WITH BOUNDED JACOBIANS
    Hasanis, Th
    Savas-Halilaj, A.
    Vlachos, Th
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (10) : 3463 - 3471
  • [26] Flat Affine Maximal Surfaces in R4
    Hou, Zhong-Hua
    Fu, Yu
    RESULTS IN MATHEMATICS, 2009, 55 (3-4) : 389 - 400
  • [27] Indefinite affine umbilical surfaces in R4
    Verstraelen, L
    Vrancken, L
    Witowicz, P
    GEOMETRIAE DEDICATA, 2000, 79 (02) : 109 - 119
  • [28] Willmore surfaces of R4 and the Whitney sphere
    Castro, I
    Urbano, F
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2001, 19 (02) : 153 - 175
  • [29] Generalized Weierstrass representation of surfaces in R4
    Chen, Jianhua
    Chen, Weihuan
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 367 - 378
  • [30] Affine Locally Symmetric Surfaces in R4
    Hou Zhong-hua and Fu Yu(School of Mathematical Sciences
    Communications in Mathematical Research, 2010, 26 (03) : 269 - 279