Axial Curvature Cycles of Surfaces Immersed in R4

被引:0
|
作者
Garcia, R. [1 ]
Sotomayor, J. [2 ]
Spindola, F. [3 ]
机构
[1] Univ Fed Goias, Inst Matemat & Estat, Campus Samambaia, BR-74690900 Goiania, Go, Brazil
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, SP, Brazil
[3] Univ Fed Maranhao, Ctr Ciencias Exatas & Tecnol, BR-65080805 Sao Luis, MA, Brazil
关键词
axial principal lines; axial mean lines; principal axial cycle; axiumbilic point; STRUCTURALLY STABLE CONFIGURATIONS; LINES;
D O I
10.1134/S1995080222040126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper are established integral expressions, in terms of geometric invariants along a closed curve-a cycle-of axial curvature, which characterize hyperbolicity i.e. non unitiy of the derivative for the Poincare first return map-holonomy-at the axial curvatue cycle on a regular surface M immersed in R-4. A proof of the genericity of hyperbolicity is given here. An integral expression for the second derivative in terms of higher order geometric invariants along a non-hyperbolic axial curvature cycle is also established in this paper. This work improves results obtained by the first and second authors.
引用
收藏
页码:78 / 97
页数:20
相关论文
共 50 条
  • [21] Algebraic minimal surfaces in R4
    Small, A
    MATHEMATICA SCANDINAVICA, 2004, 94 (01) : 109 - 124
  • [22] INVARIANTS OF LINES ON SURFACES IN R4
    Ganchev, Georgi
    Milousheva, Velichka
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (06): : 835 - 842
  • [23] Geometric invariants of surfaces in R4
    Bayard, Pierre
    Sanchez-Bringas, Federico
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (02) : 405 - 413
  • [24] Axial anomaly in noncommutative QED on R4
    Ardalan, F
    Sadooghi, N
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (18): : 3151 - 3177
  • [25] ON THE GAUSS MAP OF COMPLETE-SURFACES OF CONSTANT MEAN-CURVATURE IN R3 AND R4
    HOFFMAN, DA
    OSSERMAN, R
    SCHOEN, R
    COMMENTARII MATHEMATICI HELVETICI, 1982, 57 (04) : 519 - 531
  • [26] Exotic R4's and positive isotropic curvature
    Huang, Hong
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 51 : 112 - 116
  • [27] Umbilic singularities and lines of curvature on ellipsoids of R4
    Lopes, Debora
    Sotomayor, Jorge
    Garcia, Ronaldo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (03): : 453 - 483
  • [28] Lines of mean curvature on surfaces immersed in R3
    Garcia R.
    Sotomayor J.
    Qualitative Theory of Dynamical Systems, 2004, 4 (2) : 263 - 309
  • [29] A differential equation for lines of curvature on surfaces immersed in ℝ4
    Gutierrez C.
    Guadalupe I.
    Tribuzy R.
    Guíñez V.
    Qualitative Theory of Dynamical Systems, 2001, 2 (2) : 207 - 220
  • [30] On the size of stable minimal surfaces in R4
    Aiolfi, Ari
    Soret, Marc
    Ville, Marina
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (02) : 1155 - 1170