A differential equation for lines of curvature on surfaces immersed in ℝ4

被引:0
|
作者
Gutierrez C. [1 ]
Guadalupe I. [2 ]
Tribuzy R. [3 ]
Guíñez V. [4 ]
机构
[1] Departamento de Matemática, ICMC/USP - São Carlos, 13560-970, São Carlos, SP
[2] Centro Universitário do Sul de Minas- UNIS, Varginha-MG, Av. Cel. Jose Alves 256, Vila Pinto
[3] Universidade Federal do Amazonas, Departamento de Matemática, Manaus, AM, I.C.E.
[4] Departamento de Matemática, Universidad de Santiago de Chile, Santiago, Casilla 301
关键词
Isothermal coordinates; Lines of curvature; Smooth immersions;
D O I
10.1007/BF02969342
中图分类号
学科分类号
摘要
We establish the differential equation of the lines of curvature for immersions of surfaces into ℝ4. From the point of view of principal lines of curvature, we show that the differential equations under consideration carry almost complete information of the immersed surface.
引用
收藏
页码:207 / 220
页数:13
相关论文
共 50 条
  • [1] Lines of curvature on surfaces immersed in ℝ4
    Gutierrez C.
    Guadalupe I.
    Tribuzy R.
    Guíñez V.
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1997, 28 (2) : 233 - 251
  • [2] Lines of axial curvature on surfaces immersed in R4
    Garcia, R
    Sotomayor, J
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 12 (03) : 253 - 269
  • [3] LINES OF CURVATURE NEAR UMBILICAL POINTS ON SURFACES IMMERSED IN R(4)
    SANCHEZBRINGAS, F
    RAMIREZGALARZA, AI
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1995, 13 (02) : 129 - 140
  • [4] Lines of mean curvature on surfaces immersed in R3
    Garcia R.
    Sotomayor J.
    Qualitative Theory of Dynamical Systems, 2004, 4 (2) : 263 - 309
  • [5] PRINCIPAL LINES ON SURFACES IMMERSED WITH CONSTANT MEAN-CURVATURE
    GUTIERREZ, C
    SOTOMAYOR, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 293 (02) : 751 - 766
  • [6] Harmonic mean curvature lines on surfaces immersed in R3
    Garcia, R
    Sotomayor, J
    BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2003, 34 (02): : 303 - 331
  • [7] Axial Curvature Cycles of Surfaces Immersed in R4
    Garcia, R.
    Sotomayor, J.
    Spindola, F.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 78 - 97
  • [8] On curvature of surfaces immersed in normed spaces
    Vitor Balestro
    Horst Martini
    Ralph Teixeira
    Monatshefte für Mathematik, 2020, 192 : 291 - 309
  • [9] On curvature of surfaces immersed in normed spaces
    Balestro, Vitor
    Martini, Horst
    Teixeira, Ralph
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (02): : 291 - 309
  • [10] Differential geometry properties of lines of curvature of parametric surfaces and their visualization
    Joo, Han Kyul
    Yazaki, Tatsuya
    Takezawa, Masahito
    Maekawa, Takashi
    GRAPHICAL MODELS, 2014, 76 : 224 - 238