Lines of curvature on surfaces immersed in ℝ4

被引:0
|
作者
Gutierrez C. [1 ]
Guadalupe I. [3 ]
Tribuzy R. [2 ]
Guíñez V. [4 ]
机构
[1] IMPA, 22460-320, Rio de Janeiro, RJ, Estrada Dona Castorina
[2] Universidade Federal do Amazonas, Departamento de Matemática, 69000, Manaus, AM
[3] IMECC - UNICAMP, Universidade Estadual de Campinas, 13083-970 Campinas, SP
[4] Universidad de Santiago de Chile, Facultad de Ciencias I. C. E., Santiago, Casilla 307
关键词
Differential Equation; Umbilic Point; Generic Immersion;
D O I
10.1007/BF01233393
中图分类号
学科分类号
摘要
The differential equation of the lines of curvature for immersions of surfaces into ℝ4 is established. It is shown that, for a class of generic immersions of a surface into ℝ4 in the Cr-topology, r ≥ 4, all of the umbilic points are locally topologically stable. This type of umbilic points is described. © 1997, Sociedade Brasileira de Matemática.
引用
收藏
页码:233 / 251
页数:18
相关论文
共 50 条
  • [1] A differential equation for lines of curvature on surfaces immersed in ℝ4
    Gutierrez C.
    Guadalupe I.
    Tribuzy R.
    Guíñez V.
    Qualitative Theory of Dynamical Systems, 2001, 2 (2) : 207 - 220
  • [2] Lines of axial curvature on surfaces immersed in R4
    Garcia, R
    Sotomayor, J
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 12 (03) : 253 - 269
  • [3] LINES OF CURVATURE NEAR UMBILICAL POINTS ON SURFACES IMMERSED IN R(4)
    SANCHEZBRINGAS, F
    RAMIREZGALARZA, AI
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1995, 13 (02) : 129 - 140
  • [4] Lines of mean curvature on surfaces immersed in R3
    Garcia R.
    Sotomayor J.
    Qualitative Theory of Dynamical Systems, 2004, 4 (2) : 263 - 309
  • [5] PRINCIPAL LINES ON SURFACES IMMERSED WITH CONSTANT MEAN-CURVATURE
    GUTIERREZ, C
    SOTOMAYOR, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 293 (02) : 751 - 766
  • [6] Harmonic mean curvature lines on surfaces immersed in R3
    Garcia, R
    Sotomayor, J
    BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2003, 34 (02): : 303 - 331
  • [7] Axial Curvature Cycles of Surfaces Immersed in R4
    Garcia, R.
    Sotomayor, J.
    Spindola, F.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 78 - 97
  • [8] On curvature of surfaces immersed in normed spaces
    Vitor Balestro
    Horst Martini
    Ralph Teixeira
    Monatshefte für Mathematik, 2020, 192 : 291 - 309
  • [9] On curvature of surfaces immersed in normed spaces
    Balestro, Vitor
    Martini, Horst
    Teixeira, Ralph
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (02): : 291 - 309
  • [10] Principal mean curvature foliations on surfaces immersed in R4
    Garcia, R
    Mello, LF
    Sotomayor, J
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 939 - 950