ANTISYMMETRIC SOLUTIONS FOR A CLASS GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS

被引:0
|
作者
Gamboa, Janete Soares [1 ]
Zhou, Jiazheng [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2020年 / 12卷 / 01期
关键词
Quasilinear Schrodinger equation; antisymmetric solutions; Nehari manifold; SIGN-CHANGING SOLUTIONS; NODAL SOLUTIONS; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; COMPACT SUPPORT; EXISTENCE;
D O I
10.7153/dea-2020-12-03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the existence of antisymmetric solutions for the generalized quasilinear Schrodinger equation in H-1(R-N): -div(theta(u)del u) + 1/2 theta(u)vertical bar del u vertical bar(2) + V(x)u = f(u) in R-N, where N >= 3, V(x) is a positive continuous potential, f(u) is of subcritical growth and theta : R ->[+infinity) is a even C-1- function satisfying some suitable hypotheses. By considering a minimizing problem restricted on a partial Nehan manifold, we prove the existence of antisymmetric solutions via deformation lemma.
引用
收藏
页码:29 / 45
页数:17
相关论文
共 50 条
  • [21] Multiple solutions for a class of quasilinear Schrodinger equations in RN
    Chen, Caisheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
  • [22] A note on existence of antisymmetric solutions for a class of nonlinear Schrodinger equations
    Carvalho, Janete S.
    Maia, Liliane A.
    Miyagaki, Olimpio H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (01): : 67 - 86
  • [23] Ground States for a Class of Generalized Quasilinear Schrodinger Equations in RN
    Chen, Jianhua
    Tang, Xianhua
    Cheng, Bitao
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (05)
  • [24] On a class of quasilinear Schrodinger equations
    Ji, Shu
    Jian, Zhang
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (07) : 981 - 986
  • [25] Semiclassical solutions of generalized quasilinear Schrodinger equations with competing potentials
    Li, Quanqing
    Zhang, Jian
    Nie, Jianjun
    Wang, Wenbo
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (07) : 1045 - 1076
  • [26] On a Class of Solutions to the Generalized Derivative Schrodinger Equations
    Linares, Felipe
    Ponce, Gustavo
    Santos, Gleison N.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (06) : 1057 - 1073
  • [27] Positive solutions for a class of quasilinear Schrodinger equations with vanishing potentials
    Liu, Xiaonan
    Chen, Haibo
    BOUNDARY VALUE PROBLEMS, 2017,
  • [28] Positive solutions for a class of quasilinear Schrodinger equations with superlinear condition
    Chen, Jianhua
    Huang, Xianjiu
    Cheng, Bitao
    APPLIED MATHEMATICS LETTERS, 2019, 87 : 165 - 171
  • [29] Solutions for a class of quasilinear Schrodinger equations with critical Sobolev exponents
    Li, Zhouxin
    Zhang, Yimin
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
  • [30] Existence of positive solutions for a class of quasilinear Schrodinger equations on RN
    Chen, Shaoxiong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) : 595 - 607