ANTISYMMETRIC SOLUTIONS FOR A CLASS GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS

被引:0
|
作者
Gamboa, Janete Soares [1 ]
Zhou, Jiazheng [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2020年 / 12卷 / 01期
关键词
Quasilinear Schrodinger equation; antisymmetric solutions; Nehari manifold; SIGN-CHANGING SOLUTIONS; NODAL SOLUTIONS; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; COMPACT SUPPORT; EXISTENCE;
D O I
10.7153/dea-2020-12-03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the existence of antisymmetric solutions for the generalized quasilinear Schrodinger equation in H-1(R-N): -div(theta(u)del u) + 1/2 theta(u)vertical bar del u vertical bar(2) + V(x)u = f(u) in R-N, where N >= 3, V(x) is a positive continuous potential, f(u) is of subcritical growth and theta : R ->[+infinity) is a even C-1- function satisfying some suitable hypotheses. By considering a minimizing problem restricted on a partial Nehan manifold, we prove the existence of antisymmetric solutions via deformation lemma.
引用
收藏
页码:29 / 45
页数:17
相关论文
共 50 条
  • [41] On a class quasilinear Schrodinger equations in Rn
    de Souza, Manasses
    Marcos, Joao do O.
    da Silva, Tarciana
    APPLICABLE ANALYSIS, 2016, 95 (02) : 323 - 340
  • [42] EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR SCHRODINGER EQUATIONS IN RN
    Yuan, Ziqing
    Yu, Jianshe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (09): : 3285 - 3303
  • [43] Existence of positive solutions for a class of quasilinear Schrodinger equations of Choquard type
    Chen, Shaoxiong
    Wu, Xian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1754 - 1777
  • [44] Existence and Asymptotic Behavior of Positive Solutions for a Class of Quasilinear Schrodinger Equations
    Wang, Youjun
    Shen, Yaotian
    ADVANCED NONLINEAR STUDIES, 2018, 18 (01) : 131 - 150
  • [45] Existence of multiple nontrivial solutions for a class of quasilinear Schrodinger equations on RN
    Che, Guofeng
    Chen, Haibo
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2018, 25 (01) : 39 - 53
  • [46] On a class of solutions to the generalized derivative Schrodinger equations II
    Linares, F.
    Ponce, G.
    Santos, G. N.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (01) : 97 - 118
  • [47] Some results on standing wave solutions for a class of quasilinear Schrodinger equations
    Chen, Jianhua
    Huang, Xianjiu
    Cheng, Bitao
    Zhu, Chuanxi
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
  • [49] Soliton Solutions for Quasilinear Schrodinger Equations
    Qu, Junheng
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [50] Soliton solutions for quasilinear Schrodinger equations
    Yang, Jun
    Wang, Youjun
    Abdelgadir, Ahamed Adam
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)