A Legendre Galerkin spectral method for optimal control problems

被引:6
|
作者
Chen, Yanping [1 ]
Xia, Nianshi [2 ]
Yi, Nianyu [3 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Jimei Univ, Chengyi Coll, Fac Math, Xiamen 361021, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Legendre-Galerkin; optimal control; spectral method; MIXED FINITE-ELEMENT; SUPERCONVERGENCE; APPROXIMATION;
D O I
10.1007/s11424-011-8016-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the Legendre Galerkin spectral approximation for the unconstrained optimal control problems. The authors derive a posteriori error estimate for the spectral approximation scheme of optimal control problem. By choosing the appropriate basis functions, the stiff matrix of the discretization equations is sparse. And the authors use the Fast Legendre Transform to improve the efficiency of this method. Two numerical experiments demonstrating our theoretical results are presented.
引用
收藏
页码:663 / 671
页数:9
相关论文
共 50 条
  • [41] A condition of Legendre type for optimal control problems, linear in control
    Dmitruk, AV
    Milyutin, AA
    CALCULUS OF VARIATIONS AND OPTIMAL CONTROL, 2000, 411 : 49 - 61
  • [42] Galerkin-Legendre spectral method for the 3D Helmholtz equation
    Auteri, F
    Quartapelle, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (02) : 454 - 483
  • [43] The Legendre Galerkin spectral element method for the generalized Rosenau-type equations
    Li, Shan
    Liu, Jing
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,
  • [44] Legendre spectral Galerkin method for second-kind Volterra integral equations
    Wan, Zhengsu
    Chen, Yanping
    Huang, Yunqing
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (01) : 181 - 193
  • [45] Legendre-tau-Galerkin and spectral collocation method for nonlinear evolution equations
    Qin, Yonghui
    Ma, Heping
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 52 - 65
  • [46] Legendre spectral Galerkin method for second-kind Volterra integral equations
    Zhengsu Wan
    Yanping Chen
    Yunqing Huang
    Frontiers of Mathematics in China, 2009, 4 : 181 - 193
  • [47] An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method
    Doha, E. H.
    Bhrawy, A. H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (04) : 558 - 571
  • [48] Galerkin Optimal Control for Constrained Nonlinear Problems
    Boucher, Randy
    Kang, Wei
    Gong, Qi
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 2432 - 2437
  • [49] Modified Legendre–Gauss–Radau Collocation Method for Optimal Control Problems with Nonsmooth Solutions
    Joseph D. Eide
    William W. Hager
    Anil V. Rao
    Journal of Optimization Theory and Applications, 2021, 191 : 600 - 633
  • [50] Feasibility of the Galerkin Optimal Control Method
    Boucher, Randy
    Kang, Wei
    Gong, Qi
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 6671 - 6676