A Legendre Galerkin spectral method for optimal control problems

被引:6
|
作者
Chen, Yanping [1 ]
Xia, Nianshi [2 ]
Yi, Nianyu [3 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Jimei Univ, Chengyi Coll, Fac Math, Xiamen 361021, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Legendre-Galerkin; optimal control; spectral method; MIXED FINITE-ELEMENT; SUPERCONVERGENCE; APPROXIMATION;
D O I
10.1007/s11424-011-8016-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the Legendre Galerkin spectral approximation for the unconstrained optimal control problems. The authors derive a posteriori error estimate for the spectral approximation scheme of optimal control problem. By choosing the appropriate basis functions, the stiff matrix of the discretization equations is sparse. And the authors use the Fast Legendre Transform to improve the efficiency of this method. Two numerical experiments demonstrating our theoretical results are presented.
引用
收藏
页码:663 / 671
页数:9
相关论文
共 50 条
  • [21] THE PSEUDOSPECTRAL LEGENDRE METHOD FOR DISCRETIZING OPTIMAL-CONTROL PROBLEMS
    ELNAGAR, G
    KAZEMI, MA
    RAZZAGHI, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (10) : 1793 - 1796
  • [22] Chebyshev-Legendre method for discretizing optimal control problems
    张稳
    马和平
    Journal of Shanghai University(English Edition), 2009, 13 (02) : 113 - 118
  • [23] Spectral Galerkin Approximation of Fractional Optimal Control Problems with Fractional Laplacian
    Zhang, Jiaqi
    Yang, Yin
    Zhou, Zhaojie
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (06) : 1631 - 1654
  • [24] Discrete Legendre spectral Galerkin method for Urysohn integral equations
    Das, Payel
    Nelakanti, Gnaneshwar
    Long, Guangqing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (03) : 465 - 489
  • [25] A Convergent Legendre Spectral Collocation Method for the Variable-Order Fractional-Functional Optimal Control Problems
    Pirouzeh, Zahra
    Skandari, Mohammad Hadi Noori
    Pirbazari, Kameleh Nassiri
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [26] A numerical method for solving optimal control problems via Legendre polynomials
    Gu, Yajing
    Yan, Hongyan
    Zhu, Yuanguo
    ENGINEERING COMPUTATIONS, 2020, 37 (08) : 2735 - 2759
  • [27] Using Galerkin Method for Solving Linear Optimal Control Problems
    Liverovskiy, D., I
    Shevirev, S. P.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2014, 14 (03): : 340 - 349
  • [28] RITZ-GALERKIN METHOD FOR ABSTRACT OPTIMAL CONTROL PROBLEMS
    DANIEL, JW
    SIAM JOURNAL ON CONTROL, 1973, 11 (01): : 53 - 63
  • [29] The Chebyshev-Legendre collocation method for a class of optimal control problems
    Zhang, Wen
    Ma, Heping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (02) : 225 - 240
  • [30] Legendre pseudospectral approximations of optimal control problems
    Ross, IM
    Fahroo, F
    NEW TRENDS IN NONLINEAR DYNAMICS AND CONTROL, AND THEIR APPLICATIONS, 2003, 295 : 327 - 342