A Legendre Galerkin spectral method for optimal control problems

被引:6
|
作者
Chen, Yanping [1 ]
Xia, Nianshi [2 ]
Yi, Nianyu [3 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Jimei Univ, Chengyi Coll, Fac Math, Xiamen 361021, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Legendre-Galerkin; optimal control; spectral method; MIXED FINITE-ELEMENT; SUPERCONVERGENCE; APPROXIMATION;
D O I
10.1007/s11424-011-8016-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the Legendre Galerkin spectral approximation for the unconstrained optimal control problems. The authors derive a posteriori error estimate for the spectral approximation scheme of optimal control problem. By choosing the appropriate basis functions, the stiff matrix of the discretization equations is sparse. And the authors use the Fast Legendre Transform to improve the efficiency of this method. Two numerical experiments demonstrating our theoretical results are presented.
引用
收藏
页码:663 / 671
页数:9
相关论文
共 50 条
  • [31] A New Legendre Spectral Galerkin and Pseudo-Spectral Approximations for Fractional Initial Value Problems
    Bhrawy, A. H.
    Alghamdi, M. A.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [32] LEGENDRE SPECTRAL GALERKIN METHOD FOR ELECTROMAGNETIC SCATTERING FROM LARGE CAVITIES
    Li, Huiyuan
    Ma, Heping
    Sun, Weiwei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 353 - 376
  • [33] ERROR ANALYSIS OF GALERKIN SPECTRAL METHODS FOR NONLINEAR OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONTROL CONSTRAINT
    Chen, Yanping
    Lin, Xiuxiu
    Huang, Yunqing
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (06) : 1659 - 1683
  • [34] Galerkin spectral approximation of optimal control problems with L2-norm control constraint
    Lin, Xiuxiu
    Chen, Yanping
    Huang, Yunqing
    APPLIED NUMERICAL MATHEMATICS, 2020, 150 : 418 - 432
  • [35] The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems
    Yousefi, S. A.
    Lotfi, A.
    Dehghan, M.
    JOURNAL OF VIBRATION AND CONTROL, 2011, 17 (13) : 2059 - 2065
  • [36] A Legendre collocation method for distributed-order fractional optimal control problems
    Zaky, Mahmoud A.
    NONLINEAR DYNAMICS, 2018, 91 (04) : 2667 - 2681
  • [37] The spectral gradient method for unconstrained optimal control problems
    Ardenghi, J. I.
    Gibelli, T. I.
    Maciel, M. C.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (02) : 315 - 331
  • [38] A Legendre collocation method for distributed-order fractional optimal control problems
    Mahmoud A. Zaky
    Nonlinear Dynamics, 2018, 91 : 2667 - 2681
  • [39] Theory and application of Legendre pseudo-spectral method for solving optimal control problem
    Xu, Shao-Bing
    Li, Sheng-Bo
    Cheng, Bo
    Kongzhi yu Juece/Control and Decision, 2014, 29 (12): : 2113 - 2120
  • [40] Fourierization of the Legendre-Galerkin method and a new space-time spectral method
    Shen, Jie
    Wang, Li-Lian
    APPLIED NUMERICAL MATHEMATICS, 2007, 57 (5-7) : 710 - 720