A Legendre Galerkin spectral method for optimal control problems

被引:6
|
作者
Chen, Yanping [1 ]
Xia, Nianshi [2 ]
Yi, Nianyu [3 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Jimei Univ, Chengyi Coll, Fac Math, Xiamen 361021, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Legendre-Galerkin; optimal control; spectral method; MIXED FINITE-ELEMENT; SUPERCONVERGENCE; APPROXIMATION;
D O I
10.1007/s11424-011-8016-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the Legendre Galerkin spectral approximation for the unconstrained optimal control problems. The authors derive a posteriori error estimate for the spectral approximation scheme of optimal control problem. By choosing the appropriate basis functions, the stiff matrix of the discretization equations is sparse. And the authors use the Fast Legendre Transform to improve the efficiency of this method. Two numerical experiments demonstrating our theoretical results are presented.
引用
收藏
页码:663 / 671
页数:9
相关论文
共 50 条
  • [1] A LEGENDRE GALERKIN SPECTRAL METHOD FOR OPTIMAL CONTROL PROBLEMS
    Yanping CHEN School of Mathematical Sciences
    School of Mathematics and Computational Science
    Journal of Systems Science & Complexity, 2011, 24 (04) : 663 - 671
  • [2] A Legendre Galerkin spectral method for optimal control problems
    Yanping Chen
    Nianshi Xia
    Nianyu Yi
    Journal of Systems Science and Complexity, 2011, 24 : 663 - 671
  • [3] Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations
    Chen, Yanping
    Yi, Nianyu
    Liu, Wenbin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2254 - 2275
  • [4] A LEGENDRE-GALERKIN SPECTRAL METHOD FOR OPTIMAL CONTROL PROBLEMS GOVERNED BY STOKES EQUATIONS
    Chen, Yanping
    Huang, Fenglin
    Yi, Nianyu
    Liu, Wenbin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) : 1625 - 1648
  • [5] Legendre–Galerkin spectral methods for optimal control problems with integral constraint for state in one dimension
    Jianwei Zhou
    Danping Yang
    Computational Optimization and Applications, 2015, 61 : 135 - 158
  • [6] Legendre-Galerkin spectral methods for optimal control problems with integral constraint for state in one dimension
    Zhou, Jianwei
    Yang, Danping
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 61 (01) : 135 - 158
  • [7] Transformed Legendre spectral method for solving infinite horizon optimal control problems
    Shahini, M.
    Mehrpouya, M. A.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 (02) : 341 - 356
  • [8] A PRIORI AND POSTERIORI ERROR ESTIMATES OF LEGENDRE GALERKIN SPECTRAL METHODS FOR GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Lu, Zuliang
    Huang, Fei
    Lin, Li
    Cai, Fei
    Yang, Yin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (04): : 989 - 1006
  • [9] Constants within Error Estimates for Legendre-Galerkin Spectral Approximations of Control-Constrained Optimal Control Problems
    Zhou, Jianwei
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [10] Solving Nonlinear Filtering Problems in Real Time by Legendre Galerkin Spectral Method
    Dong, Wenhui
    Luo, Xue
    Yau, Stephen S-T
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1559 - 1572