Design-Technology Interaction for Post-32 nm Node CMOS Technologies

被引:2
|
作者
Shahidi, Ghavam G. [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
来源
2010 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS | 2010年
关键词
D O I
10.1109/VLSIT.2010.5556204
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper will review the technology features in the recent and upcoming nodes and how they will impact circuit design, product performance, and migratability. It will cover the challenges and serious limitations that we will face in FEOL (increased leakage, loss of body effect), BEOL (RC, electro-migration), lithography (ever more complex design rules), and power management (end of frequency scaling, very high device count). We will talk about some possible technology solutions that will address some of the above challenges (disruptive device technologies, increased number of BEOL levels, and migration to lower voltages). Net is that scaling is expected to continue to 11 nm (at least). Design is expected to become significantly more complex.
引用
收藏
页码:143 / 144
页数:2
相关论文
共 50 条
  • [21] Design Insights of Nanosheet FET and CMOS Circuit Applications at 5-nm Technology Node
    Sreenivasulu, V. Bharath
    Narendar, Vadthiya
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (08) : 4115 - 4122
  • [22] Comprehensive Study of S/D Engineering for 32 nm node CMOS in Direct Silicon Bonded (DSB) Technology
    Yasutake, N.
    Nomachi, A.
    Itokawa, H.
    Morooka, T.
    Zhang, L.
    Fukushima, T.
    Harakawa, H.
    Mizushima, I.
    Azuma, A.
    Toyosihma, Y.
    ESSDERC 2008: PROCEEDINGS OF THE 38TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2008, : 330 - +
  • [23] Comprehensive study of S/D engineering for 32 nm node CMOS in direct silicon bonded (DSB) technology
    Yasutake, N.
    Nomachi, A.
    Itokawa, H.
    Morooka, T.
    Zhang, L.
    Fukushima, T.
    Harakawa, H.
    Mizushima, I.
    Azuma, A.
    Toyosihma, Y.
    SOLID-STATE ELECTRONICS, 2009, 53 (07) : 694 - 700
  • [24] A Comparative Study of CMOS and Carbon Nanotube Field Effect Transistor Based Inverter at 32 nm Technology Node
    Saha, P.
    Jain, A.
    Sarkar, S. K.
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 : S424 - S426
  • [25] Challenges and opportunities for high performance 32 nm CMOS technology
    Sleight, J. W.
    Lauer, I.
    Dokumaci, O.
    Fried, D. M.
    Guo, D.
    Haran, B.
    Narasimha, S.
    Sheraw, C.
    Singh, D.
    Steigerwalt, M.
    Wang, X.
    Oldiges, P.
    Sadana, D.
    Sung, C. Y.
    Haensch, W.
    Khare, M.
    2006 INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2006, : 431 - +
  • [26] Novel devices and process for 32 nm CMOS technology and beyond
    YangYuan Wang
    Xing Zhang
    XiaoYan Liu
    Ru Huang
    Science in China Series F: Information Sciences, 2008, 51 : 743 - 755
  • [27] Novel devices and process for 32 nm CMOS technology and beyond
    WANG YangYuan
    ScienceinChina(SeriesF:InformationSciences), 2008, (06) : 743 - 755
  • [28] Novel devices and process for 32 nm CMOS technology and beyond
    Wang YangYuan
    Zhang Xing
    Liu XiaoYan
    Huang Ru
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (06): : 743 - 755
  • [29] Advanced CMOS technology beyond 45nm node
    Kawanaka, Shigeru
    Hokazono, Akira
    Yasutake, Nobuaki
    Tatsumura, Kosuke
    Koyama, Masato
    Toyoshima, Yoshiaki
    2007 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATIONS (VLSI-TSA), PROCEEDINGS OF TECHNICAL PAPERS, 2007, : 164 - +
  • [30] Simulation study of multiple FIN FinFET design for 32nm technology node and beyond
    Wang, Xinlin
    Bryant, Andres
    Dokumaci, Omer
    Oldiges, Phil
    Haensch, Wilfried
    SISPAD 2007: SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES 2007, 2007, : 125 - +