Quartic multifractality and finite-size corrections at the spin quantum Hall transition

被引:9
|
作者
Puschmann, Martin [1 ]
Hernangomez-Perez, Daniel [2 ]
Lang, Bruno [3 ,4 ]
Bera, Soumya [5 ]
Evers, Ferdinand [1 ]
机构
[1] Univ Regensburg, Inst Theoret Phys, D-93053 Regensburg, Germany
[2] Weizmann Inst Sci, Dept Mol Chem & Mat Sci, IL-7610001 Rehovot, Israel
[3] Berg Univ Wuppertal, IMACM, D-42119 Wuppertal, Germany
[4] Berg Univ Wuppertal, Inst Appl Comp Sci, D-42119 Wuppertal, Germany
[5] Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India
关键词
SYSTEMS; STATISTICS; REFLECTION; IMPEDANCE; STATES;
D O I
10.1103/PhysRevB.103.235167
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spin quantum Hall transition (or class C transition in two dimensions) represents one of the few localization-delocalization transitions for which some of the critical exponents are known exactly. Not known, however, is the multifractal spectrum tau(q), which describes the system-size scaling of inverse participation ratios P-q i.e., the q moments of critical wave-function amplitudes. We here report simulations based on the class C Chalker-Coddington network and demonstrate that tau(q) is (essentially) a quartic polynomial in q. Analytical results fix all prefactors except the quartic curvature that we obtain as gamma = (2.22 +/- 0.15) x 10(-3). In order to achieve the necessary accuracy in the presence of sizable corrections to scaling, we have analyzed the evolution with system size of the entire P-q-distribution function. As it turns out, in a sizable window of q values this distribution function exhibits a (single-parameter) scaling collapse already in the preasymptotic regime, where finite-size corrections are not negligible. This observation motivates us to propose new, original approach for extracting tau(q) based on concepts borrowed from the Kolmogorov-Smirnov test of mathematical statistics. We believe that our work provides the conceptual means for high-precision investigations of multifractal spectra also near other localization-delocalization transitions of current interest, especially the integer (class A) quantum Hall effect.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Momentum-space finite-size corrections for quantum Monte Carlo calculations
    Gaudoin, R.
    Gurtubay, I. G.
    Pitarke, J. M.
    [J]. PHYSICAL REVIEW B, 2012, 85 (12):
  • [32] Logarithmic corrections to finite-size spectrum of SU(N) symmetric quantum chains
    Majumdar, K
    Mukherjee, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (38): : L543 - L549
  • [33] ON THE QUANTUM FINITE-SIZE SCALING
    KORUTCHEVA, ER
    TONCHEV, NS
    [J]. PHYSICA A, 1993, 195 (1-2): : 215 - 222
  • [34] ARITHMETICAL FINITE-SIZE CORRECTIONS IN ONE-DIMENSIONAL QUANTUM-SYSTEMS
    AUDIT, P
    TRUONG, TT
    [J]. PHYSICS LETTERS A, 1990, 145 (6-7) : 309 - 313
  • [35] FINITE-SIZE CORRECTIONS FOR THE XXX-ANTIFERROMAGNET
    AVDEEV, LV
    DORFEL, BD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (01): : L13 - L17
  • [36] FINITE-SIZE CORRECTIONS IN THE XYZ HEISENBERG CHAIN
    MARTIN, HO
    DEVEGA, HJ
    [J]. PHYSICAL REVIEW B, 1985, 32 (09): : 5959 - 5965
  • [37] An improved Landauer principle with finite-size corrections
    Reeb, David
    Wolf, Michael M.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [38] Tangential finite-size scaling at the Gaussian topological transition in the quantum spin-1 anisotropic chain
    Verissimo, Luan M.
    Pereira, Maria S. S.
    Lyra, Marcelo L.
    [J]. PHYSICAL REVIEW B, 2021, 104 (02)
  • [39] Finite-size corrections to the blackbody radiation laws
    Garcia-Garcia, Antonio M.
    [J]. PHYSICAL REVIEW A, 2008, 78 (02):
  • [40] Finite-size corrections in the random assignment problem
    Caracciolo, Sergio
    D'Achille, Matteo P.
    Malatesta, Enrico M.
    Sicuro, Gabriele
    [J]. PHYSICAL REVIEW E, 2017, 95 (05) : 052129