An improved Landauer principle with finite-size corrections

被引:187
|
作者
Reeb, David [1 ]
Wolf, Michael M. [1 ]
机构
[1] Tech Univ Munich, Dept Math, D-85748 Garching, Germany
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
关键词
Landauer's principle; entropy; heat; statistical mechanics; quantum information theory; second law of thermodynamics; WORK EXTRACTION; QUANTUM; THERMODYNAMICS; MINIMIZATION; COMPUTATION; INFORMATION; ENTROPY;
D O I
10.1088/1367-2630/16/10/103011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Landauer's principle relates entropy decrease and heat dissipation during logically irreversible processes. Most theoretical justifications of Landauer's principle either use thermodynamic reasoning or rely on specific models based on arguable assumptions. Here, we aim at a general and minimal setup to formulate Landauer's principle in precise terms. We provide a simple and rigorous proof of an improved version of the principle, which is formulated in terms of an equality rather than an inequality. The proof is based on quantum statistical mechanics concepts rather than on thermodynamic argumentation. From this equality version, we obtain explicit improvements of Landauer's bound that depend on the effective size of the thermal reservoir and reduce to Landauer's bound only for infinite-sized reservoirs.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Finite-size corrections to the density of states
    Woerner, C. H.
    Munoz, E.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2012, 33 (05) : 1465 - 1472
  • [2] FINITE-SIZE CORRECTIONS FOR THE XXX-ANTIFERROMAGNET
    AVDEEV, LV
    DORFEL, BD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (01): : L13 - L17
  • [3] FINITE-SIZE CORRECTIONS IN THE XYZ HEISENBERG CHAIN
    MARTIN, HO
    DEVEGA, HJ
    [J]. PHYSICAL REVIEW B, 1985, 32 (09): : 5959 - 5965
  • [4] Finite-size corrections in the random assignment problem
    Caracciolo, Sergio
    D'Achille, Matteo P.
    Malatesta, Enrico M.
    Sicuro, Gabriele
    [J]. PHYSICAL REVIEW E, 2017, 95 (05) : 052129
  • [5] Finite-size corrections to the atmospheric heating of micrometeorites
    Beech, Martin
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 402 (02) : 1208 - 1212
  • [6] LOGARITHMIC CORRECTIONS TO FINITE-SIZE SCALING IN STRIPS
    CARDY, JL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (17): : 1093 - 1098
  • [7] Finite-size corrections to the blackbody radiation laws
    Garcia-Garcia, Antonio M.
    [J]. PHYSICAL REVIEW A, 2008, 78 (02):
  • [8] CORRECTIONS TO FINITE-SIZE SCALING FOR QUANTUM CHAINS
    GEHLEN, GV
    HOEGER, C
    RITTENBERG, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (09): : L469 - L472
  • [9] Finite-size corrections in simulation of dipolar fluids
    Belloni, Luc
    Puibasset, Joel
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (22):
  • [10] Finite-size corrections to dyonic giant magnons
    Hatsuda, Yasuyuki
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (14-15): : 2239 - 2240