An improved Landauer principle with finite-size corrections

被引:187
|
作者
Reeb, David [1 ]
Wolf, Michael M. [1 ]
机构
[1] Tech Univ Munich, Dept Math, D-85748 Garching, Germany
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
关键词
Landauer's principle; entropy; heat; statistical mechanics; quantum information theory; second law of thermodynamics; WORK EXTRACTION; QUANTUM; THERMODYNAMICS; MINIMIZATION; COMPUTATION; INFORMATION; ENTROPY;
D O I
10.1088/1367-2630/16/10/103011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Landauer's principle relates entropy decrease and heat dissipation during logically irreversible processes. Most theoretical justifications of Landauer's principle either use thermodynamic reasoning or rely on specific models based on arguable assumptions. Here, we aim at a general and minimal setup to formulate Landauer's principle in precise terms. We provide a simple and rigorous proof of an improved version of the principle, which is formulated in terms of an equality rather than an inequality. The proof is based on quantum statistical mechanics concepts rather than on thermodynamic argumentation. From this equality version, we obtain explicit improvements of Landauer's bound that depend on the effective size of the thermal reservoir and reduce to Landauer's bound only for infinite-sized reservoirs.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] Finite-size corrections to the free energies of crystalline solids
    Polson, JM
    Trizac, E
    Pronk, S
    Frenkel, D
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (12): : 5339 - 5342
  • [22] Control of the finite-size corrections in exact diagonalization studies
    Gros, C
    [J]. PHYSICAL REVIEW B, 1996, 53 (11): : 6865 - 6868
  • [23] Finite-size corrections in numerical simulation of liquid water
    Belloni, Luc
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (09):
  • [24] Fluctuation corrections to thermodynamic functions: Finite-size effects
    Sinha, Sudarson Sekhar
    Ghosh, Arnab
    Ray, Deb Shankar
    [J]. PHYSICAL REVIEW E, 2013, 87 (04):
  • [25] Improved DIQKD protocols with finite-size analysis
    Tan, Ernest Y. -Z.
    Sekatski, Pavel
    Schwonnek, Rene
    Renner, Renato
    Sangouard, Nicolas
    Lim, Charles C. -W.
    [J]. QUANTUM, 2022, 6 : 1 - 63
  • [26] Finite-size effects for anisotropic bootstrap percolation: Logarithmic corrections
    van Enter, Aernout C. D.
    Hulshof, Tim
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (06) : 1383 - 1389
  • [27] AN EXPLICIT EXPRESSION FOR FINITE-SIZE CORRECTIONS TO THE CHEMICAL-POTENTIAL
    SMIT, B
    FRENKEL, D
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (44) : 8659 - 8665
  • [28] FINITE-SIZE CORRECTIONS IN THE NON-LINEAR SCHRODINGER MODEL
    BERKOVICH, A
    MURTHY, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07): : L395 - L400
  • [29] THE AHARONOV-BOHM EFFECT IN RINGS - FINITE-SIZE CORRECTIONS
    VASILOPOULOS, P
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (17): : 3277 - 3293
  • [30] Corrections to finite-size scaling in the φ4 model on square lattices
    Kaupuzs, J.
    Melnik, R. V. N.
    Rimsans, J.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (09):