Finite-size corrections in the random assignment problem

被引:8
|
作者
Caracciolo, Sergio [1 ,2 ]
D'Achille, Matteo P. [1 ,2 ]
Malatesta, Enrico M. [1 ,2 ]
Sicuro, Gabriele [3 ]
机构
[1] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[2] INFN, Via Celoria 16, I-20133 Milan, Italy
[3] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 2, I-00185 Rome, Italy
关键词
OPTIMIZATION; ALGORITHM;
D O I
10.1103/PhysRevE.95.052129
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analytically derive, in the context of the replica formalism, the first finite-size corrections to the average optimal cost in the random assignment problem for a quite generic distribution law for the costs. We show that, when moving from a power-law distribution to a Gamma distribution, the leading correction changes both in sign and in its scaling properties. We also examine the behavior of the corrections when approaching a delta-function distribution. By using a numerical solution of the saddle-point equations, we provide predictions that are confirmed by numerical simulations.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Finite-size corrections to Lyapunov spectra for band random matrices
    Kottos, T
    Politi, A
    Izrailev, FM
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (26) : 5965 - 5976
  • [2] Finite-size corrections to disordered Ising models on random regular graphs
    Lucibello, C.
    Morone, F.
    Parisi, G.
    Ricci-Tersenghi, F.
    Rizzo, Tommaso
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [3] Finite-size corrections to the spectrum of regular random graphs: An analytical solution
    Metz, F. L.
    Parisi, G.
    Leuzzi, L.
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [4] FINITE-SIZE CORRECTIONS IN THE FERROMAGNETIC PHASE OF THE RANDOM ENERGY-MODEL
    ROUHANI, S
    SAAKIAN, D
    MODERN PHYSICS LETTERS B, 1995, 9 (14): : 877 - 882
  • [5] Finite-size corrections to the density of states
    Woerner, C. H.
    Munoz, E.
    EUROPEAN JOURNAL OF PHYSICS, 2012, 33 (05) : 1465 - 1472
  • [6] FINITE-SIZE EFFECTS IN RANDOM ENERGY MODELS AND IN THE PROBLEM OF POLYMERS IN A RANDOM MEDIUM
    COOK, J
    DERRIDA, B
    JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (3-4) : 505 - 539
  • [7] Finite-size corrections to disordered systems on Erdos-Renyi random graphs
    Ferrari, U.
    Lucibello, C.
    Morone, F.
    Parisi, G.
    Ricci-Tersenghi, F.
    Rizzo, T.
    PHYSICAL REVIEW B, 2013, 88 (18)
  • [8] FINITE-SIZE CORRECTIONS FOR THE XXX-ANTIFERROMAGNET
    AVDEEV, LV
    DORFEL, BD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (01): : L13 - L17
  • [9] FINITE-SIZE CORRECTIONS IN THE XYZ HEISENBERG CHAIN
    MARTIN, HO
    DEVEGA, HJ
    PHYSICAL REVIEW B, 1985, 32 (09): : 5959 - 5965
  • [10] An improved Landauer principle with finite-size corrections
    Reeb, David
    Wolf, Michael M.
    NEW JOURNAL OF PHYSICS, 2014, 16