Finite-size corrections to disordered Ising models on random regular graphs

被引:21
|
作者
Lucibello, C. [1 ]
Morone, F. [2 ,3 ]
Parisi, G. [4 ,5 ]
Ricci-Tersenghi, F. [4 ,5 ]
Rizzo, Tommaso [6 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] CUNY City Coll, Levich Inst, New York, NY 10031 USA
[3] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[4] Univ Roma La Sapienza, Dipartimento Fis, IPCF CNR, UOS Roma, I-00185 Rome, Italy
[5] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy
[6] Univ Roma La Sapienza, IPCF CNR, UOS Roma, I-00185 Rome, Italy
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 01期
基金
欧洲研究理事会;
关键词
MEAN-FIELD THEORY; SPIN-GLASSES; FRUSTRATED SYSTEMS; CONNECTIVITY; SYMMETRY;
D O I
10.1103/PhysRevE.90.012146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive the analytical expression for the first finite-size correction to the average free energy of disordered Ising models on random regular graphs. The formula can be physically interpreted as a weighted sum over all non-self-intersecting loops in the graph, the weight being the free-energy shift due to the addition of the loop to an infinite tree.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Finite-size corrections to the spectrum of regular random graphs: An analytical solution
    Metz, F. L.
    Parisi, G.
    Leuzzi, L.
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [2] Finite-size corrections to disordered systems on Erdos-Renyi random graphs
    Ferrari, U.
    Lucibello, C.
    Morone, F.
    Parisi, G.
    Ricci-Tersenghi, F.
    Rizzo, T.
    PHYSICAL REVIEW B, 2013, 88 (18)
  • [3] Finite-size corrections in the random assignment problem
    Caracciolo, Sergio
    D'Achille, Matteo P.
    Malatesta, Enrico M.
    Sicuro, Gabriele
    PHYSICAL REVIEW E, 2017, 95 (05) : 052129
  • [4] Is finite-size scaling universal for Ising models?
    Muller, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (04): : 585 - 589
  • [5] Finite-size corrections in the Ising model with special boundary conditions
    Izmailian, N. Sh
    NUCLEAR PHYSICS B, 2010, 839 (03) : 446 - 465
  • [6] Finite-size effects in exponential random graphs
    Gorsky, A.
    Valba, O.
    JOURNAL OF COMPLEX NETWORKS, 2020, 8 (01)
  • [7] Finite size scaling functions of the phase transition in the ferromagnetic Ising model on random regular graphs
    Kulkarni, Suman
    Dhar, Deepak
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (02):
  • [8] Finite-size corrections to Lyapunov spectra for band random matrices
    Kottos, T
    Politi, A
    Izrailev, FM
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (26) : 5965 - 5976
  • [9] Finite-size scaling corrections in two-dimensional Ising and Potts ferromagnets
    de Queiroz, SLA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (04): : 721 - 729
  • [10] RANDOM ISING-MODEL IN A TRANSVERSE FIELD - A FINITE-SIZE APPROACH
    DEFELICIO, JRD
    PHYSICS LETTERS A, 1994, 191 (5-6) : 389 - 392