Finite-size effects in exponential random graphs

被引:2
|
作者
Gorsky, A. [1 ,2 ]
Valba, O. [3 ]
机构
[1] RAS, Inst Informat Transmiss Problems, Moscow, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[3] Natl Res Univ Higher Sch Econ, Dept Appl Math, Moscow 101000, Russia
关键词
random graphs; finite size effect; two-star model; phase transition; PHASE-TRANSITIONS; MODELS;
D O I
10.1093/comnet/cnaa008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we shownumerically the strong finite-size effects in exponential random graphs. Particularly, for the two-star model above the critical value of the chemical potential for triplets a ground state is a starlike graph with the finite set of hubs at network density p < 0.5 or as the single cluster at p > 0.5. We find that there exists the critical value of number of nodes N* (p) when the ground state undergoes clear-cut crossover. At N > N* (p), the network flows via a cluster evaporation to the state involving the small star in the Erdos-Renyi environment. The similar evaporation of the cluster takes place at N > N * (p) in the Strauss model. We suggest that the entropic trap mechanism is relevant for microscopic mechanism behind the crossover regime.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Finite-size corrections to disordered Ising models on random regular graphs
    Lucibello, C.
    Morone, F.
    Parisi, G.
    Ricci-Tersenghi, F.
    Rizzo, Tommaso
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [2] Finite-size corrections to the spectrum of regular random graphs: An analytical solution
    Metz, F. L.
    Parisi, G.
    Leuzzi, L.
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [3] Finite-size scaling, phase coexistence, and algorithms for the random cluster model on random graphs
    Helmuth, Tyler
    Jenssen, Matthew
    Perkins, Will
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02): : 817 - 848
  • [4] Finite-size corrections to disordered systems on Erdos-Renyi random graphs
    Ferrari, U.
    Lucibello, C.
    Morone, F.
    Parisi, G.
    Ricci-Tersenghi, F.
    Rizzo, T.
    PHYSICAL REVIEW B, 2013, 88 (18)
  • [5] FINITE-SIZE EFFECTS IN RANDOM ENERGY MODELS AND IN THE PROBLEM OF POLYMERS IN A RANDOM MEDIUM
    COOK, J
    DERRIDA, B
    JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (3-4) : 505 - 539
  • [6] RANDOM-FIELD CRITICAL-BEHAVIOR - FINITE-SIZE EFFECTS
    SINGH, S
    BANAVAR, JR
    PHYSICAL REVIEW LETTERS, 1985, 55 (20) : 2220 - 2222
  • [7] Finite-size effects on QGP
    Brink, DM
    Lo Monaco, L
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1998, 24 (04) : 867 - 882
  • [8] FINITE-SIZE EFFECTS IN A SANDPILE
    LIU, CH
    JAEGER, HM
    NAGEL, SR
    PHYSICAL REVIEW A, 1991, 43 (12): : 7091 - 7092
  • [9] Finite-size effects in microrheology
    Santamaria-Holek, I.
    Rubi, J. M.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (06):
  • [10] FINITE-SIZE EFFECTS ON MULTIFRACTALS
    KAUFMANN, Z
    PHYSICAL REVIEW A, 1991, 44 (10): : 6923 - 6925