Perturbative Terms of Kac-Moody-Eisenstein Series

被引:0
|
作者
Fleig, Philipp [1 ]
Kleinschmidt, Axel [2 ,3 ]
机构
[1] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, DE-14476 Potsdam, Germany
[3] ULB, Int Solvay Inst, BE-1050 Brussels, Belgium
来源
STRING-MATH 2012 | 2015年 / 90卷
关键词
STRING THEORY; DUALITY;
D O I
10.1090/pspum/090/01526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Supersymmetric theories of gravity can exhibit surprising hidden symmetries when considered on manifolds that include a torus. When the torus is of large dimension these symmetries can become infinite-dimensional and of Kac-Moody type. When taking quantum effects into account the symmetries become discrete and invariant functions under these symmetries should play an important role in quantum gravity. The new results here concern surprising simplifications in the constant terms of very particular Eisenstein series on these Kac-Moody groups. These are exactly the cases that are expected to arise in string theory.
引用
收藏
页码:265 / 275
页数:11
相关论文
共 50 条
  • [31] Heisenberg and Kac-Moody categorification
    Brundan, Jonathan
    Savage, Alistair
    Webster, Ben
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (05):
  • [32] Kac-Moody symmetric spaces
    Freyn, Walter
    Hartnick, Tobias
    Horn, Max
    Koehl, Ralf
    MUENSTER JOURNAL OF MATHEMATICS, 2020, 13 (01): : 1 - 114
  • [33] Hyperbolic Kac-Moody superalgebras
    Frappat, L
    Sciarrino, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
  • [34] On the structure of Kac-Moody algebras
    Marquis, Timothee
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (04): : 1124 - 1152
  • [35] Quantizations of Kac-Moody algebras
    Kharchenko, V. K.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (04) : 666 - 683
  • [36] On the Topology of Kac-Moody groups
    Kitchloo, Nitu
    MATHEMATISCHE ZEITSCHRIFT, 2014, 276 (3-4) : 727 - 756
  • [37] Lattices in Kac-Moody groups
    Carbone, L
    Garland, H
    MATHEMATICAL RESEARCH LETTERS, 1999, 6 (3-4) : 439 - 447
  • [38] Buildings and Kac-Moody Groups
    Remy, Bertrand
    BUILDINGS, FINITE GEOMETRIES AND GROUPS, 2012, 10 : 231 - 250
  • [39] WEYL GROUP MULTIPLE DIRICHLET SERIES FOR SYMMETRIZABLE KAC-MOODY ROOT SYSTEMS
    Lee, Kyu-Hwan
    Zhang, Yichao
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (01) : 597 - 625
  • [40] GENERALIZED KAC-MOODY ALGEBRAS
    BORCHERDS, R
    JOURNAL OF ALGEBRA, 1988, 115 (02) : 501 - 512