Perturbative Terms of Kac-Moody-Eisenstein Series

被引:0
|
作者
Fleig, Philipp [1 ]
Kleinschmidt, Axel [2 ,3 ]
机构
[1] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, DE-14476 Potsdam, Germany
[3] ULB, Int Solvay Inst, BE-1050 Brussels, Belgium
来源
STRING-MATH 2012 | 2015年 / 90卷
关键词
STRING THEORY; DUALITY;
D O I
10.1090/pspum/090/01526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Supersymmetric theories of gravity can exhibit surprising hidden symmetries when considered on manifolds that include a torus. When the torus is of large dimension these symmetries can become infinite-dimensional and of Kac-Moody type. When taking quantum effects into account the symmetries become discrete and invariant functions under these symmetries should play an important role in quantum gravity. The new results here concern surprising simplifications in the constant terms of very particular Eisenstein series on these Kac-Moody groups. These are exactly the cases that are expected to arise in string theory.
引用
收藏
页码:265 / 275
页数:11
相关论文
共 50 条
  • [41] Isomorphisms of Kac-Moody groups
    Caprace, PE
    Mühlherr, B
    INVENTIONES MATHEMATICAE, 2005, 161 (02) : 361 - 388
  • [42] Dipolarizations in Kac-Moody Algebras
    Wang, Yan
    Meng, Daoji
    ALGEBRA COLLOQUIUM, 2009, 16 (04) : 669 - 676
  • [43] Quantizations of Kac-Moody Algebras
    Kharchenko, Vladislav
    QUANTUM LIE THEORY: A MULTILINEAR APPROACH, 2015, 2150 : 99 - 127
  • [44] Kac-Moody groups and completions
    Capdeboscq, Inna
    Rumynin, Dmitriy
    JOURNAL OF ALGEBRA, 2020, 561 : 131 - 148
  • [45] LIGHT-LIKE INTEGRABILITY IN LOOP SUPERSPACE, KAC MOODY CENTRAL CHARGES AND CHERN SIMONS TERMS
    BERGSHOEFF, E
    DELDUC, F
    SOKATCHEV, E
    PHYSICS LETTERS B, 1991, 262 (04) : 444 - 450
  • [46] Construction of Kac-Moody superalgebras as minimal graded Lie superalgebras and weight multiplicities for Kac-Moody superalgebras
    Kim, JA
    Shin, DU
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (07) : 4981 - 5001
  • [47] Bounded presentations of Kac-Moody groups
    Capdeboscq, Inna
    JOURNAL OF GROUP THEORY, 2013, 16 (06) : 899 - 905
  • [48] Kac-Moody algebras and the cosmological constant
    West, Peter
    PHYSICS LETTERS B, 2020, 809
  • [49] A theory of Lorentzian Kac-Moody algebras
    Nikulin V.V.
    Journal of Mathematical Sciences, 2001, 106 (4) : 3212 - 3221
  • [50] Remarks on Virasoro and Kac-Moody algebras
    Grabowski, J
    Marmo, G
    Perelomov, A
    Simoni, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (28): : 4969 - 4984