Quantizations of Kac-Moody algebras

被引:1
|
作者
Kharchenko, V. K. [1 ,2 ]
机构
[1] Univ Nacl Autonoma Mexico, FES Cuautitlan, CIT, Cuautitlan 54768, Mexico
[2] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
关键词
QUANTIZED ENVELOPING-ALGEBRAS; MULTIPARAMETER QUANTUM GROUPS; DRINFELD DOUBLES; HOPF-ALGEBRAS; LIE-ALGEBRAS; BASES;
D O I
10.1016/j.jpaa.2013.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the extent to which a quantum universal enveloping algebra of a Kac-Moody algebra g is defined by multidegrees of its defining relations. To this end, we consider a class of character Hopf algebras defined by the same number of defining relations of the same degrees as the Kac-Moody algebra g. We demonstrate that if the generalized Cartan matrix A of g is connected then the algebraic structure, up to a finite number of exceptional cases, is defined by just one "continuous" parameter q related to a symmetrization of A, and one "discrete" parameter m related to the modular symmetrizations ofA. The Hopf algebra structure is defined by n(n - 1)/2 additional "continuous" parameters. We also consider the exceptional cases for Cartan matrices of finite or affine types in more detail, establishing the number of exceptional parameter values in terms of the Fibonacci sequence. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:666 / 683
页数:18
相关论文
共 50 条
  • [1] Quantizations of Kac-Moody Algebras
    Kharchenko, Vladislav
    QUANTUM LIE THEORY: A MULTILINEAR APPROACH, 2015, 2150 : 99 - 127
  • [2] EMBEDDING INTO KAC-MOODY ALGEBRAS AND CONSTRUCTION OF FOLDING SUBALGEBRAS FOR GENERALIZED KAC-MOODY ALGEBRAS
    NAITO, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1991, 67 (10) : 333 - 337
  • [3] The Trascendence of Kac-Moody Algebras
    Fernandez-Ternero, Desamparados
    Nunez-Valdes, Juan
    FILOMAT, 2021, 35 (10) : 3445 - 3474
  • [4] CONTINUUM KAC-MOODY ALGEBRAS
    Appel, Andrea
    Sala, Francesco
    Schiffmann, Olivier
    MOSCOW MATHEMATICAL JOURNAL, 2022, 22 (02) : 177 - 224
  • [5] Kac-Moody Lie Algebras Graded by Kac-Moody Root Systems
    Ben Messaoud, Hechmi
    Rousseau, Guy
    JOURNAL OF LIE THEORY, 2014, 24 (02) : 321 - 350
  • [6] GAUGED KAC-MOODY ALGEBRAS
    CADAVID, AC
    FINKELSTEIN, RJ
    LETTERS IN MATHEMATICAL PHYSICS, 1988, 16 (03) : 279 - 285
  • [7] SUPERSYMMETRY AND KAC-MOODY ALGEBRAS
    LANGOUCHE, F
    SCHUCKER, T
    LETTERS IN MATHEMATICAL PHYSICS, 1986, 11 (03) : 275 - 282
  • [8] On the structure of Kac-Moody algebras
    Marquis, Timothee
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (04): : 1124 - 1152
  • [9] A generalization of Kac-Moody algebras
    Harada, K
    Miyamoto, M
    Yamada, H
    GROUPS, DIFFERENCE SETS, AND THE MONSTER, 1996, 4 : 377 - 408
  • [10] GENERALIZED KAC-MOODY ALGEBRAS
    BORCHERDS, R
    JOURNAL OF ALGEBRA, 1988, 115 (02) : 501 - 512