Quantizations of Kac-Moody algebras

被引:1
|
作者
Kharchenko, V. K. [1 ,2 ]
机构
[1] Univ Nacl Autonoma Mexico, FES Cuautitlan, CIT, Cuautitlan 54768, Mexico
[2] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
关键词
QUANTIZED ENVELOPING-ALGEBRAS; MULTIPARAMETER QUANTUM GROUPS; DRINFELD DOUBLES; HOPF-ALGEBRAS; LIE-ALGEBRAS; BASES;
D O I
10.1016/j.jpaa.2013.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the extent to which a quantum universal enveloping algebra of a Kac-Moody algebra g is defined by multidegrees of its defining relations. To this end, we consider a class of character Hopf algebras defined by the same number of defining relations of the same degrees as the Kac-Moody algebra g. We demonstrate that if the generalized Cartan matrix A of g is connected then the algebraic structure, up to a finite number of exceptional cases, is defined by just one "continuous" parameter q related to a symmetrization of A, and one "discrete" parameter m related to the modular symmetrizations ofA. The Hopf algebra structure is defined by n(n - 1)/2 additional "continuous" parameters. We also consider the exceptional cases for Cartan matrices of finite or affine types in more detail, establishing the number of exceptional parameter values in terms of the Fibonacci sequence. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:666 / 683
页数:18
相关论文
共 50 条
  • [31] Supercategorification of quantum Kac-Moody algebras
    Kang, Seok-Jin
    Kashiwara, Masaki
    Oh, Se-jin
    ADVANCES IN MATHEMATICS, 2013, 242 : 116 - 162
  • [32] AUTOMORPHISMS OF AFFINE KAC-MOODY ALGEBRAS
    BAUSCH, J
    TITS, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (11): : 409 - 412
  • [33] Characters of affine Kac-Moody algebras
    Hussin, A
    King, RC
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 162 - 166
  • [34] SOME FORMS OF KAC-MOODY ALGEBRAS
    ANDRUSKIEWITSCH, N
    JOURNAL OF ALGEBRA, 1992, 147 (02) : 324 - 344
  • [35] Varieties of affine Kac-Moody algebras
    M. V. Zaitsev
    Mathematical Notes, 1997, 62 : 80 - 86
  • [36] Triangulated categories and Kac-Moody algebras
    Liangang Peng
    Jie Xiao
    Inventiones mathematicae, 2000, 140 : 563 - 603
  • [37] Kac-Moody groups and cluster algebras
    Geiss, Christof
    Leclerc, Bernard
    Schroeer, Jan
    ADVANCES IN MATHEMATICS, 2011, 228 (01) : 329 - 433
  • [38] Deformed Kac-Moody algebras and their representations
    Liu, Jianbo
    Zhao, Kaiming
    JOURNAL OF ALGEBRA, 2008, 319 (11) : 4692 - 4711
  • [39] GROUPS ASSOCIATED WITH KAC-MOODY ALGEBRAS
    TITS, J
    ASTERISQUE, 1989, (177-78) : 7 - 31
  • [40] Quiver varieties and Kac-Moody algebras
    Nakajima, H
    DUKE MATHEMATICAL JOURNAL, 1998, 91 (03) : 515 - 560