The Integration of Genetic Maps Using Bayesian Inference

被引:1
|
作者
Jow, Howsun [1 ]
Bhattacharjee, Madhuchhanda [1 ]
Boys, Richard [1 ]
Wilkinson, Darren [1 ]
机构
[1] Newcastle Univ, Dept Math & Stat, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国生物技术与生命科学研究理事会;
关键词
Bayesian inference; integrated map; linkage map; radiation hybrid map; LOCATION DATABASE;
D O I
10.1089/cmb.2008.0243
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In the absence of a comprehensive sequence-based map of a species' genome, genetic maps constitute the next best source of genetic information. Information derived from such maps can be used, for example, in identifying the genes that form quantitative trait loci (QTLs) and for performing comparative genomics between species. Integrating information from a collection of maps will provide more accurate inferences on, for example, marker locations. We describe a method for integrating (possibly conflicting) experimentally derived genetic maps. It assumes a fully probabilistic model that describes the relationship between experimentally derived genetic maps and the integrated map. The model views experimentally derived maps for a given species' chromosome as noisy realisations of a single "true" map, where the noise consists of possible linear distortions and measurement error on the marker locations. Bayesian statistical inference methodology is then used to infer the integrated map (the "true" map) and its attendant uncertainties in the marker locations by using data from a number of experimentally determined genetic maps. The method is shown to work well on simulated data and is used to integrate linkage maps of Pig chromosome 6 and also linkage and radiation hybrid maps of Cow chromosome 1.
引用
收藏
页码:825 / 840
页数:16
相关论文
共 50 条
  • [31] A simple algorithm to estimate genetic variance in an animal threshold model using Bayesian inference
    Odegard, Jorgen
    Meuwissen, Theo H. E.
    Heringstad, Bjorg
    Madsen, Per
    [J]. GENETICS SELECTION EVOLUTION, 2010, 42 : 1 - 7
  • [32] Genetic parameters for buffalo milk yield and milk quality traits using Bayesian inference
    Aspilcueta-Borquis, R. R.
    Araujo Neto, F. R.
    Baldi, F.
    Bignardi, A. B.
    Albuquerque, L. G.
    Tonhati, H.
    [J]. JOURNAL OF DAIRY SCIENCE, 2010, 93 (05) : 2195 - 2201
  • [33] Bayesian inference on genetic merit under uncertain paternity
    Fernando F Cardoso
    Robert J Tempelman
    [J]. Genetics Selection Evolution, 35
  • [34] Bayesian inference on genetic merit under uncertain paternity
    Cardoso, FF
    Tempelman, RJ
    [J]. GENETICS SELECTION EVOLUTION, 2003, 35 (05) : 469 - 487
  • [35] Bayesian inference of three-dimensional gas maps: Galactic CO
    Mertsch, Philipp
    Vittino, Andrea
    [J]. 37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [36] A Full Bayesian Approach for Boolean Genetic Network Inference
    Han, Shengtong
    Wong, Raymond K. W.
    Lee, Thomas C. M.
    Shen, Linghao
    Li, Shuo-Yen R.
    Fan, Xiaodan
    [J]. PLOS ONE, 2014, 9 (12):
  • [37] EASY AND FLEXIBLE BAYESIAN INFERENCE OF QUANTITATIVE GENETIC PARAMETERS
    Waldmann, Patrik
    [J]. EVOLUTION, 2009, 63 (06) : 1640 - 1643
  • [38] Incremental adaptation using Bayesian inference
    Yu, K.
    Gales, M. J. F.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 217 - 220
  • [39] Hierarchical inconsistent qualitative knowledge integration for quantitative Bayesian inference
    Chang, Rui
    Stetter, Martin
    Brauer, Wilfried
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
  • [40] Using the BACC Software for Bayesian Inference
    William J. McCausland
    [J]. Computational Economics, 2004, 23 (3) : 201 - 218