A Full Bayesian Approach for Boolean Genetic Network Inference

被引:13
|
作者
Han, Shengtong [1 ]
Wong, Raymond K. W. [2 ]
Lee, Thomas C. M. [3 ]
Shen, Linghao [4 ]
Li, Shuo-Yen R. [4 ,5 ]
Fan, Xiaodan [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
[2] Iowa State Univ, Dept Stat, Ames, IA USA
[3] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[4] Chinese Univ Hong Kong, Dept Informat Engn, Shatin, Hong Kong, Peoples R China
[5] Univ Elect Sci & Technol China, Chengdu 610054, Peoples R China
来源
PLOS ONE | 2014年 / 9卷 / 12期
基金
美国国家科学基金会;
关键词
FLAT FOOT; FLEXIBLE FLATFOOT; OVERWEIGHT; CHILDREN; FEET; PREVALENCE; ARCH;
D O I
10.1371/journal.pone.0115806
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] An Efficient Boolean Modelling Approach for Genetic Network Inference
    Gamage, Hasini Nakulugamuwa
    Chetty, Madhu
    Shatte, Adrian
    Hallinan, Jennifer
    [J]. 2021 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2021, : 190 - 197
  • [2] A Full Bayesian Approach to Sparse Network Inference Using Heterogeneous Datasets
    Jin, Junyang
    Yuan, Ye
    Goncalves, Jorge
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (07) : 3282 - 3288
  • [3] Bayesian inference approach for Full Poincare Mueller polarimetry
    Suarez-Bermejo, Juan Carlos
    Gorgas, Javier
    Pascual, Sergio
    Santarsiero, Massimo
    de Sande, Juan Carlos Gonzalez
    Piquero, Gemma
    [J]. OPTICS AND LASER TECHNOLOGY, 2024, 168
  • [4] A simpler Bayesian network model for genetic regulatory network inference
    Bastos, G
    Guimaraes, KS
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 304 - 309
  • [5] Bayesian Network for Hydrological Model: an inference approach
    Ribeiro, Vitor P.
    Cunha, Angela S. M.
    Duarte, Sergio N.
    Padovani, Carlos R.
    Marques, Patricia A. A.
    Maciel, Carlos D.
    Balestieri, Jose Antonio P.
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] A Bayesian Approach to Income Inference in a Communication Network
    Fixman, Martin
    Berenstein, Ariel
    Brea, Jorge
    Minnoni, Martin
    Travizano, Matias
    Sarraute, Carlos
    [J]. PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, 2016, : 579 - 582
  • [7] Filter feature selection based Boolean Modelling for Genetic Network Inference
    Gamage, Hasini Nakulugamuwa
    Chetty, Madhu
    Shatte, Adrian
    Hallinan, Jennifer
    [J]. BIOSYSTEMS, 2022, 221
  • [8] An extension of the differential approach for Bayesian network inference to dynamic Bayesian networks
    Brandherm, B
    Jameson, A
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2004, 19 (08) : 727 - 748
  • [9] Network inference, error, and informant (in)accuracy: a Bayesian approach
    Butts, CT
    [J]. SOCIAL NETWORKS, 2003, 25 (02) : 103 - 140
  • [10] A BAYESIAN GRAPHICAL MODELING APPROACH TO MICRORNA REGULATORY NETWORK INFERENCE
    Stingo, Francesco C.
    Chen, Yian A.
    Vannucci, Marina
    Barrier, Marianne
    Mirkes, Philip E.
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (04): : 2024 - 2048