The Integration of Genetic Maps Using Bayesian Inference

被引:1
|
作者
Jow, Howsun [1 ]
Bhattacharjee, Madhuchhanda [1 ]
Boys, Richard [1 ]
Wilkinson, Darren [1 ]
机构
[1] Newcastle Univ, Dept Math & Stat, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国生物技术与生命科学研究理事会;
关键词
Bayesian inference; integrated map; linkage map; radiation hybrid map; LOCATION DATABASE;
D O I
10.1089/cmb.2008.0243
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In the absence of a comprehensive sequence-based map of a species' genome, genetic maps constitute the next best source of genetic information. Information derived from such maps can be used, for example, in identifying the genes that form quantitative trait loci (QTLs) and for performing comparative genomics between species. Integrating information from a collection of maps will provide more accurate inferences on, for example, marker locations. We describe a method for integrating (possibly conflicting) experimentally derived genetic maps. It assumes a fully probabilistic model that describes the relationship between experimentally derived genetic maps and the integrated map. The model views experimentally derived maps for a given species' chromosome as noisy realisations of a single "true" map, where the noise consists of possible linear distortions and measurement error on the marker locations. Bayesian statistical inference methodology is then used to infer the integrated map (the "true" map) and its attendant uncertainties in the marker locations by using data from a number of experimentally determined genetic maps. The method is shown to work well on simulated data and is used to integrate linkage maps of Pig chromosome 6 and also linkage and radiation hybrid maps of Cow chromosome 1.
引用
收藏
页码:825 / 840
页数:16
相关论文
共 50 条
  • [1] A Multiscale Strategy for Bayesian Inference Using Transport Maps
    Parno, Matthew
    Moselhy, Tarek
    Marzouk, Youssef
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 1160 - 1190
  • [2] Bayesian inference with optimal maps
    El Moselhy, Tarek A.
    Marzouk, Youssef M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (23) : 7815 - 7850
  • [3] Inference reasoning on fishers' knowledge using Bayesian causal maps
    de Beaufort, Louis Bonneau
    Sedki, Karima
    Fontenelle, Guy
    [J]. ECOLOGICAL INFORMATICS, 2015, 30 : 345 - 355
  • [4] Bayesian inference in the space of topological maps
    Ranganathan, A
    Menegatti, E
    Dellaert, F
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2006, 22 (01) : 92 - 107
  • [5] Bayesian inference and posterior probability maps
    Friston, KJ
    Penny, W
    [J]. ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 413 - 417
  • [6] Controlled information integration and bayesian inference
    Juslin, Peter
    [J]. FRONTIERS IN PSYCHOLOGY, 2015, 6
  • [7] Monte Carlo integration over stepping stone models for spatial genetic inference using approximate Bayesian computation
    Baird, Stuart J. E.
    Santos, Filipe
    [J]. MOLECULAR ECOLOGY RESOURCES, 2010, 10 (05) : 873 - 885
  • [8] Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference
    Siegelmann, Hava T.
    Holzman, Lars E.
    [J]. CHAOS, 2010, 20 (03)
  • [9] Contemporary groups in the genetic evaluation of Nellore cattle using Bayesian inference
    da Silva, Delvan Alves
    Fonseca e Silva, Fabyano
    Ventura, Henrique Torres
    Junqueira, Vinicius Silva
    da Silva, Alessandra Alves
    Mota, Rodrigo Reis
    Lopes, Paulo Savio
    [J]. PESQUISA AGROPECUARIA BRASILEIRA, 2017, 52 (08) : 643 - 651
  • [10] Partial abductive inference in Bayesian belief networks using a genetic algorithm
    de Campos, LM
    Gámez, JA
    Moral, S
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (11-13) : 1211 - 1217