Constrained linear regression models for interval-valued data with dependence

被引:0
|
作者
Lima Neto, Eufrasio de A. [1 ]
de Carvalho, Francisco de A. T. [1 ]
Coelho Neto, Jose F. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, BR-50740540 Recife, PE, Brazil
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces some approaches to fitting a constrained linear regression model to interval-valued data. The use of inequality constraints guarantee mathematical coherence between the predicted values of the lower bound ((y) over cap (Li)) and the upper bound ((y) over cap (Ui)). The authors also propose expressions to the goodness of fit measure called determination coefficient. The assessment of the proposed prediction methods is based on the average behaviour of the root mean square error and of the square of the correlation coefficient in the framework of a Monte Carlo experiment. The synthetic data sets takes into account the dependence or not between the midpoint and range of the intervals, among others aspects. Finally, the approaches are applied in a real data-set.
引用
收藏
页码:258 / 263
页数:6
相关论文
共 50 条
  • [41] Interval-Valued Regression - Sensitivity to Data Set Features
    Kabir, Shaily
    Wagner, Christian
    [J]. IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [42] Bivariate elliptical regression for modeling interval-valued data
    Wagner J. F. Silva
    Renata M. C. R. Souza
    F. J. A. Cysneiros
    [J]. Computational Statistics, 2022, 37 : 2003 - 2028
  • [43] Bivariate elliptical regression for modeling interval-valued data
    Silva, Wagner J. F.
    Souza, Renata M. C. R.
    Cysneiros, F. J. A.
    [J]. COMPUTATIONAL STATISTICS, 2022, 37 (04) : 2003 - 2028
  • [44] Ordinal classification for interval-valued data and interval-valued functional data
    Alcacer, Aleix
    Martinez-Garcia, Marina
    Epifanio, Irene
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [45] Interval-valued linear regression model with an asymmetric Laplace distribution
    Guan, Li
    Li, Mengxiao
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024,
  • [46] Statistical interval-valued fuzzy systems via linear regression
    Qiu, Y
    Zhang, YQ
    Zhao, Y
    [J]. 2005 IEEE International Conference on Granular Computing, Vols 1 and 2, 2005, : 229 - 232
  • [47] Interval-valued regression and classification models in the framework of machine learning
    Utkin, Lev V.
    Coolen, Frank P. A.
    [J]. ISIPTA '11 - PROCEEDINGS OF THE SEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, 2011, : 371 - 380
  • [48] Computing Simple Bounds for Regression Estimates for Linear Regression with Interval-valued Covariates
    Schollmeyer, Georg
    [J]. PROCEEDINGS OF THE TWELVETH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, 2021, 147 : 273 - 279
  • [49] Interval-Valued Linear Model
    Xun Wang
    Shoumei Li
    Thierry Denœux
    [J]. International Journal of Computational Intelligence Systems, 2015, 8 (1) : 114 - 127
  • [50] Interval-Valued Linear Model
    Wang, Xun
    Li, Shoumei
    Denoux, Thierry
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2015, 8 (01) : 114 - 127