Interval-valued regression and classification models in the framework of machine learning

被引:0
|
作者
Utkin, Lev V. [1 ]
Coolen, Frank P. A. [2 ]
机构
[1] St Petersburg State Forest Tech Acad, Dept Comp Sci, St Petersburg, Russia
[2] Univ Durham, Dept Math Sci, Durham, England
关键词
belief functions; classification; interval-valued observations; machine learning; p-box; regression; risk functional; support vector machines; DISCRIMINANT-ANALYSIS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new approach for constructing regression and classification models for interval-valued data. The risk functional is considered under a set of probability distributions, resulting from the application of a chosen inferential method to the data, such that the bounding distributions of the set depend on the regression and classification parameter. Two extreme ('pessimistic' and 'optimistic') strategies of decision making are presented. The method is applicable with many inferential methods and risk functionals. The general theory is presented together with the specific optimisation problems for several scenarios, including the extension of the support vector machine method for interval-valued data.
引用
收藏
页码:371 / 380
页数:10
相关论文
共 50 条
  • [1] Regression Models for Symbolic Interval-Valued Variables
    Chacon, Jose Emmanuel
    Rodriguez, Oldemar
    [J]. ENTROPY, 2021, 23 (04)
  • [2] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60
  • [3] Minimal Learning Machine for Interval-Valued Data
    Oliveira, Diego F.
    Barbosa, Nykolas M. M.
    Alencar, Alisson S. C.
    Gomes, Joao Paulo P.
    Rodrigues, Leonardo R.
    [J]. 2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 188 - 193
  • [4] Bivariate symbolic regression models for interval-valued variables
    Lima Neto, Eufrasio de A.
    Cordeiro, Gauss M.
    de Carvalho, Francisco de A. T.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) : 1727 - 1744
  • [5] A Bayesian parametrized method for interval-valued regression models
    Xu, Min
    Qin, Zhongfeng
    [J]. STATISTICS AND COMPUTING, 2023, 33 (03)
  • [6] A Bayesian parametrized method for interval-valued regression models
    Min Xu
    Zhongfeng Qin
    [J]. Statistics and Computing, 2023, 33 (3)
  • [7] A bivariate Bayesian method for interval-valued regression models
    Xu, Min
    Qin, Zhongfeng
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 235
  • [8] Ordinal classification for interval-valued data and interval-valued functional data
    Alcacer, Aleix
    Martinez-Garcia, Marina
    Epifanio, Irene
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [10] Interval-valued data regression using nonparametric additive models
    Changwon Lim
    [J]. Journal of the Korean Statistical Society, 2016, 45 : 358 - 370