Interval-valued regression and classification models in the framework of machine learning

被引:0
|
作者
Utkin, Lev V. [1 ]
Coolen, Frank P. A. [2 ]
机构
[1] St Petersburg State Forest Tech Acad, Dept Comp Sci, St Petersburg, Russia
[2] Univ Durham, Dept Math Sci, Durham, England
关键词
belief functions; classification; interval-valued observations; machine learning; p-box; regression; risk functional; support vector machines; DISCRIMINANT-ANALYSIS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new approach for constructing regression and classification models for interval-valued data. The risk functional is considered under a set of probability distributions, resulting from the application of a chosen inferential method to the data, such that the bounding distributions of the set depend on the regression and classification parameter. Two extreme ('pessimistic' and 'optimistic') strategies of decision making are presented. The method is applicable with many inferential methods and risk functionals. The general theory is presented together with the specific optimisation problems for several scenarios, including the extension of the support vector machine method for interval-valued data.
引用
收藏
页码:371 / 380
页数:10
相关论文
共 50 条
  • [11] Panel Interval-Valued Data Nonlinear Regression Models and Applications
    Ji, Ai-bing
    Li, Qing-qing
    Zhang, Jin-jin
    [J]. COMPUTATIONAL ECONOMICS, 2023,
  • [12] Constrained linear regression models for interval-valued data with dependence
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    Coelho Neto, Jose F.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 258 - 263
  • [13] Constrained linear regression models for symbolic interval-valued variablesk
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 333 - 347
  • [14] Regression analysis for interval-valued data
    Billard, L
    Diday, E
    [J]. DATA ANALYSIS, CLASSIFICATION, AND RELATED METHODS, 2000, : 369 - 374
  • [15] Linear regression with interval-valued data
    Sun, Yan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [16] Constrained Regression for Interval-Valued Data
    Gonzalez-Rivera, Gloria
    Lin, Wei
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (04) : 473 - 490
  • [17] Resistant Regression for Interval-Valued Data
    Renan, Jobson
    Silva, Jornandes Dias
    Galdino, Sergio
    [J]. 2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 277 - 281
  • [18] Quantile Regression of Interval-Valued Data
    Fagundes, Roberta A. A.
    de Souza, Renata M. C. R.
    Soares, Yanne M. G.
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2586 - 2591
  • [19] Clustering regression based on interval-valued fuzzy outputs and interval-valued fuzzy parameters
    Arefi, Mohsen
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (03) : 1339 - 1351
  • [20] Multiview Classification Through Learning From Interval-Valued Data
    Ma, Guangzhi
    Lu, Jie
    Fang, Zhen
    Liu, Feng
    Zhang, Guangquan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,