Diffusive majority-vote model

被引:4
|
作者
Lima, J. R. S. [1 ]
Lima, F. W. S. [1 ]
Alves, T. F. A. [1 ]
Alves, G. A. [2 ]
Macedo-Filho, A. [2 ]
机构
[1] Univ Fed Piaui, Dept Fis, BR-57072970 Teresina, PI, Brazil
[2] Univ Fed Piaui, Dept Fis, BR-64002150 Teresina, PI, Brazil
关键词
PHASE-TRANSITIONS;
D O I
10.1103/PhysRevE.105.034105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We define a stochastic reaction-diffusion process that describes a consensus formation in a nonsedentary population. The process is a diffusive version of the majority-vote model, where the state update follows two stages: In the first stage, spins are allowed to jump to a random neighbor node with probabilities D+ and D- for the respective spin orientations, and in the second stage, the spins in the same node can change its values according to the majority-vote update rule. The model presents a consensus formation phase when the concentration is greater than a threshold value and a paramagnetic phase on the converse for equal diffusion probabilities, i.e., maintaining the inversion symmetry. Setting unequal diffusion probabilities for the respective spin orientations is the same as applying an external magnetic field. The system undergoes a discontinuous phase transition for concentrations higher than the critical threshold on the external field. The individuals that diffuse more dominate the stationary collective opinion.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Continuous majority-vote model
    Costa, LSA
    de Souza, AJF
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [2] Majority-vote model on random graphs
    Pereira, LFC
    Moreira, FGB
    PHYSICAL REVIEW E, 2005, 71 (01)
  • [3] Majority-vote model on a random lattice
    Lima, FWS
    Fulco, UL
    Costa, RN
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [4] Majority-vote model with different agents
    Vilela, Andre L. M.
    Moreira, F. G. Brady
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (19) : 4171 - 4178
  • [5] Majority-vote model on hyperbolic lattices
    Wu, Zhi-Xi
    Holme, Petter
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [6] Majority-vote model for financial markets
    Vilela, Andre L. M.
    Wang, Chao
    Nelson, Kenric P.
    Stanley, H. Eugene
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 515 : 762 - 770
  • [7] Non-Markovian majority-vote model
    Chen, Hanshuang
    Wang, Shuang
    Shen, Chuansheng
    Zhang, Haifeng
    Bianconi, Ginestra
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [8] Majority-vote model with a bimodal distribution of noises
    Vilela, Andre L. M.
    Moreira, F. G. B.
    de Souza, Adauto J. F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (24) : 6456 - 6462
  • [9] Dynamical Critical Exponent for the Majority-Vote Model
    Abel G. da Silva Filho
    F. G. Brady Moreira
    Journal of Statistical Physics, 2002, 106 : 391 - 401
  • [10] Dynamical critical exponent for the majority-vote model
    da Silva, AG
    Moreira, FGB
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (1-2) : 391 - 401