Diffusive majority-vote model

被引:4
|
作者
Lima, J. R. S. [1 ]
Lima, F. W. S. [1 ]
Alves, T. F. A. [1 ]
Alves, G. A. [2 ]
Macedo-Filho, A. [2 ]
机构
[1] Univ Fed Piaui, Dept Fis, BR-57072970 Teresina, PI, Brazil
[2] Univ Fed Piaui, Dept Fis, BR-64002150 Teresina, PI, Brazil
关键词
PHASE-TRANSITIONS;
D O I
10.1103/PhysRevE.105.034105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We define a stochastic reaction-diffusion process that describes a consensus formation in a nonsedentary population. The process is a diffusive version of the majority-vote model, where the state update follows two stages: In the first stage, spins are allowed to jump to a random neighbor node with probabilities D+ and D- for the respective spin orientations, and in the second stage, the spins in the same node can change its values according to the majority-vote update rule. The model presents a consensus formation phase when the concentration is greater than a threshold value and a paramagnetic phase on the converse for equal diffusion probabilities, i.e., maintaining the inversion symmetry. Setting unequal diffusion probabilities for the respective spin orientations is the same as applying an external magnetic field. The system undergoes a discontinuous phase transition for concentrations higher than the critical threshold on the external field. The individuals that diffuse more dominate the stationary collective opinion.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] ISOTROPIC MAJORITY-VOTE MODEL ON A SQUARE LATTICE
    DEOLIVEIRA, MJ
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) : 273 - 281
  • [12] EXAMINATION OF A MAJORITY-VOTE TECHNIQUE
    HESELTINE, GL
    KIRK, JH
    JOURNAL OF PARAPSYCHOLOGY, 1980, 44 (02) : 167 - 176
  • [13] Phase Transitions of Majority-Vote Model on Modular Networks
    黄凤
    陈含爽
    申传胜
    Chinese Physics Letters, 2015, (11) : 182 - 185
  • [14] Majority-vote model with collective influence of hierarchical structures
    Yi-Duo, Chen
    Yu-Ting, Yun
    Jian-Yue, Guan
    Zhi-Xi, Wu
    ACTA PHYSICA SINICA, 2024, 73 (02)
  • [15] Majority-vote model on triangular, honeycomb and Kagome lattices
    Santos, J. C.
    Lima, F. W. S.
    Malarz, K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (02) : 359 - 364
  • [16] MAJORITY-VOTE MODEL WITH HETEROGENEOUS AGENTS ON SQUARE LATTICE
    Lima, F. W. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (11):
  • [17] Phase Transitions of Majority-Vote Model on Modular Networks
    Huang Feng
    Chen Han-Shuang
    Shen Chuan-Sheng
    CHINESE PHYSICS LETTERS, 2015, 32 (11)
  • [18] Majority-Vote Model on Scale-Free Hypergraphs
    Gradowski, T.
    Krawiecki, A.
    ACTA PHYSICA POLONICA A, 2015, 127 (3A) : A55 - A58
  • [19] Small-world effects in the majority-vote model
    Campos, PRA
    de Oliveira, VM
    Moreira, FGB
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [20] Phase Transitions of Majority-Vote Model on Modular Networks
    黄凤
    陈含爽
    申传胜
    Chinese Physics Letters, 2015, 32 (11) : 182 - 185