Diffusive majority-vote model

被引:4
|
作者
Lima, J. R. S. [1 ]
Lima, F. W. S. [1 ]
Alves, T. F. A. [1 ]
Alves, G. A. [2 ]
Macedo-Filho, A. [2 ]
机构
[1] Univ Fed Piaui, Dept Fis, BR-57072970 Teresina, PI, Brazil
[2] Univ Fed Piaui, Dept Fis, BR-64002150 Teresina, PI, Brazil
关键词
PHASE-TRANSITIONS;
D O I
10.1103/PhysRevE.105.034105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We define a stochastic reaction-diffusion process that describes a consensus formation in a nonsedentary population. The process is a diffusive version of the majority-vote model, where the state update follows two stages: In the first stage, spins are allowed to jump to a random neighbor node with probabilities D+ and D- for the respective spin orientations, and in the second stage, the spins in the same node can change its values according to the majority-vote update rule. The model presents a consensus formation phase when the concentration is greater than a threshold value and a paramagnetic phase on the converse for equal diffusion probabilities, i.e., maintaining the inversion symmetry. Setting unequal diffusion probabilities for the respective spin orientations is the same as applying an external magnetic field. The system undergoes a discontinuous phase transition for concentrations higher than the critical threshold on the external field. The individuals that diffuse more dominate the stationary collective opinion.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Critical noise of majority-vote model on complex networks
    Chen, Hanshuang
    Shen, Chuansheng
    He, Gang
    Zhang, Haifeng
    Hou, Zhonghuai
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [22] Effect of Strong Opinions on the Dynamics of the Majority-Vote Model
    Vilela, Andre L. M.
    Stanley, H. Eugene
    SCIENTIFIC REPORTS, 2018, 8
  • [23] MAJORITY-VOTE MODEL WITH INDEPENDENT AGENTS ON COMPLEX NETWORKS
    Krawiecki, A.
    Gradowski, T.
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2019, 12 (01) : 91 - 110
  • [24] MAJORITY-VOTE MODEL ON OPINION-DEPENDENT NETWORK
    Lima, F. W. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (09):
  • [25] Effect of Strong Opinions on the Dynamics of the Majority-Vote Model
    André L. M. Vilela
    H. Eugene Stanley
    Scientific Reports, 8
  • [27] Exact solution of the isotropic majority-vote model on complete graphs
    Fronczak, Agata
    Fronczak, Piotr
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [28] Majority-vote model on a dynamic small-world network
    Stone, Thomas E.
    Mckay, Susan R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 419 : 437 - 443
  • [29] Three-state majority-vote model on square lattice
    Lima, F. W. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1753 - 1758
  • [30] Statistics of opinion domains of the majority-vote model on a square lattice
    Peres, Lucas R.
    Fontanari, Jose F.
    PHYSICAL REVIEW E, 2010, 82 (04):