Majority-vote model for financial markets

被引:32
|
作者
Vilela, Andre L. M. [1 ]
Wang, Chao [2 ]
Nelson, Kenric P. [3 ]
Stanley, H. Eugene [4 ,5 ]
机构
[1] Univ Pernambuco, Escola Politecn Pernambuco, BR-50720001 Recife, PE, Brazil
[2] Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China
[3] Boston Univ, Elect & Comp Engn, Boston, MA 02215 USA
[4] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[5] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
基金
中国国家自然科学基金;
关键词
Econophysics; Sociophysics; Financial markets; Order-disorder transitions; Statistical mechanics of spin models; SPIN MODEL; DYNAMICS; BUBBLES;
D O I
10.1016/j.physa.2018.10.007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a heterogeneous agent-based two-state sociophysics model to simulate financial markets. Focusing on stock market trader dynamics, we propose a model with two kinds of individual - the contrarian agent and the noise trader - in which the dynamics of buying and selling investors are governed by local and global interactions. We define an antiferromagnetic coupling that relates the option of contrarian agents to global magnetization and a ferromagnetic interaction that connects noise traders to their local neighborhood. Our model presents such stylized facts of real financial markets as clustered volatility, power-law distributed returns, and the long-time correlation of the absolute returns with exponential decay. We also observe that the distribution of logarithmic returns can be fitted by the Student's t distribution in which its degree of freedom changes with the percentage of contrarian agents in the market. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:762 / 770
页数:9
相关论文
共 50 条
  • [1] Diffusive majority-vote model
    Lima, J. R. S.
    Lima, F. W. S.
    Alves, T. F. A.
    Alves, G. A.
    Macedo-Filho, A.
    PHYSICAL REVIEW E, 2022, 105 (03)
  • [2] Continuous majority-vote model
    Costa, LSA
    de Souza, AJF
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [3] Majority-vote model on random graphs
    Pereira, LFC
    Moreira, FGB
    PHYSICAL REVIEW E, 2005, 71 (01)
  • [4] Majority-vote model on a random lattice
    Lima, FWS
    Fulco, UL
    Costa, RN
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [5] Majority-vote model with different agents
    Vilela, Andre L. M.
    Moreira, F. G. Brady
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (19) : 4171 - 4178
  • [6] Majority-vote model on hyperbolic lattices
    Wu, Zhi-Xi
    Holme, Petter
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [7] Non-Markovian majority-vote model
    Chen, Hanshuang
    Wang, Shuang
    Shen, Chuansheng
    Zhang, Haifeng
    Bianconi, Ginestra
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [8] Majority-vote model with a bimodal distribution of noises
    Vilela, Andre L. M.
    Moreira, F. G. B.
    de Souza, Adauto J. F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (24) : 6456 - 6462
  • [9] Dynamical Critical Exponent for the Majority-Vote Model
    Abel G. da Silva Filho
    F. G. Brady Moreira
    Journal of Statistical Physics, 2002, 106 : 391 - 401
  • [10] Dynamical critical exponent for the majority-vote model
    da Silva, AG
    Moreira, FGB
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (1-2) : 391 - 401