Commutativity of kth-order slant Toeplitz operators

被引:7
|
作者
Lu, Yufeng [1 ]
Liu, Chaomei [1 ]
Yang, Jun [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Toeplitz operator; k(th)-order slant Toeplitz operator; commutativity; Bergman space; PLURIHARMONIC SYMBOLS; HARMONIC SYMBOLS; BERGMAN SPACES; ADJOINTS;
D O I
10.1002/mana.200710100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, commutativity of k(th)-order slant Toeplitz operators are discussed. We show that commutativity and essential commutativity of two slant Toeplitz operators are the same. Also, we study k(th)-order slant Toeplitz operators on the Bergman space L-a(2)(D) and give some commuting properties, algebraic and spectral properties of k(th)-order slant Toeplitz operators on the Bergman space. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1304 / 1313
页数:10
相关论文
共 50 条
  • [11] Commutativity of slant weighted Toeplitz operators
    Datt G.
    Ohri N.
    [J]. Arabian Journal of Mathematics, 2016, 5 (2) : 69 - 75
  • [12] COMMUTATIVITY AND SPECTRAL PROPERTIES OF kth -ORDER SLANT LITTLE HANKEL OPERATORS ON THE BERGMAN SPACE
    Gupta, Anuradha
    Gupta, Bhawna
    [J]. OPERATORS AND MATRICES, 2019, 13 (01): : 209 - 220
  • [13] KTH-ORDER FINITE AUTOMATON
    LIU, CL
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1964, EC13 (05) : 642 - &
  • [14] Generation of kth-order random toposequences
    Odgers, Nathan P.
    McBratney, Alex. B.
    Minasny, Budiman
    [J]. COMPUTERS & GEOSCIENCES, 2008, 34 (05) : 479 - 490
  • [15] Operators That Commute with Slant Toeplitz Operators
    Ho, Mark C.
    Wong, Mu Ming
    [J]. APPLIED MATHEMATICS RESEARCH EXPRESS, 2008, (01)
  • [16] Model-order reduction of large-scale kth-order linear dynamical systems via a kth-order Arnoldi method
    Lin, Yiqin
    Bao, Liang
    Wei, Yimin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (02) : 435 - 453
  • [17] ESSENTIALLY SLANT TOEPLITZ OPERATORS
    Arora, Subhash Chander
    Bhola, Jyoti
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (02): : 1 - 8
  • [18] Properties of slant Toeplitz operators
    Ho, MC
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1996, 45 (03) : 843 - 862
  • [19] A GENERALIZATION OF SLANT TOEPLITZ OPERATORS
    Datt, Gopal
    Aggarwal, Ritu
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 9 (02): : 73 - 92
  • [20] CONGRUENCE RELATIONS FOR KTH-ORDER LINEAR RECURRENCES
    SOMER, L
    [J]. FIBONACCI QUARTERLY, 1989, 27 (01): : 25 - 31